

CDM - Executive Board

page 1

CLEAN DEVELOPMENT MECHANISM PROJECT DESIGN DOCUMENT FORM (CDM-PDD) Version 03 - in effect as of: 28 July 2006

CONTENTS

- A. General description of <u>project activity</u>
- B. Application of a <u>baseline and monitoring methodology</u>
- C. Duration of the <u>project activity</u> / <u>crediting period</u>
- D. Environmental impacts
- E. <u>Stakeholders'</u> comments

Annexes

- Annex 1: Contact information on participants in the project activity
- Annex 2: Information regarding public funding
- Annex 3: <u>Baseline</u> information
- Annex 4: Analytical method for calculating decay factor "k"
- Annex 5: Malaysian National CDM Criteria

CDM – Executive Board page 2

SECTION A. General description of project activity

A.1 Title of the project activity:

>>

Inno-Malsa - Palm Oil Mill Waste Recycle Scheme, Malaysia

Version number: 1.0 Date: May 10th, 2007

A.2. Description of the project activity:

>>

Project background

The growth of the palm oil industry in Malaysia has been phenomenal over the last 50 years. From merely 54,000 hectares in 1960 to 4 million hectares in 2005, when over 70 millions tonnes of fresh fruit bunches ("FFB") were processed and 15 million tonnes of crude palm oil ("CPO") produced. The process of extracting CPO in the palm oil mills ("POM") produces a large amount of wastes predominately in the form of empty fruit bunches ("EFB") – 23% of FFB, palm oil mills effluents ("POME") – 0.70m^3 per tonne FFB and decanter sludge – approximately 3% of FFB. As a result of the remote locations of palm oil mills in general, these wastes, especially POME, which has an extremely high content of degradable organic matter, may have adverse pollution impact in the event that they are not treated properly. There are also the environmental implications and typical environmental problems associated with plantation agriculture ie. soil erosion and water pollution due to application of chemical fertilisers and pesticides.

Objective of the project activity

The objective of the project is to provide a total waste treatment solution for the Malsa Corporation Sdn Bhd ("Malsa") palm oil mill located near Sandakan in the state of Sabah, Malaysia, whereby the project activity will build, operate and own a waste treatment plant next to the palm oil mill. The project activity will:

- use the bioorganic solid waste EFB(100%), decanter sludge (100%) and 60% of the pre-treated (as described in point 2) organic wastewater POME via an In-Vessel co-composting facility integrated with a special bio-formulation technology, to turn these waste into bio-organic fertiliser that will be utilized on the plantations that supply the mill with FFB. This bio-organic fertilizer has a commercial market in the palm oil plantations, fruits and vegetables farms in Malaysia and the region;
- pre-treat 100% of organic wastewater POME using a suspended solids removal treatment to eliminate the solid particles and reduce the Chemical Oxygen Demand ("COD") content before application to the co-composting process. The sludge resulting from this pre-treatment process will be added to bio-organic solid waste mix. The remaining 40% of the pre-treated POME will pass through an aerobic pond system to achieve a final discharge with a BOD and COD level meeting the regulatory requirement.

The key by-product of this waste treatment process is the identified blends of bio-organic fertiliser that will be sold and used by the surrounding palm oil estates, thus providing a full recycle of the waste resources back to the plantations that produce the FFB.

Greenhouse gas mitigation potential

Due to the prevailing practices and associated high cost of transportation (in remote locations), the EFB bio-mass is commonly piled up in the vicinity of the palm oil mills or on landfill sites on the mill plantation and left to decay, which leads to uncontrolled methane emission and putrid odours. Common practice is also to treat POME in deep anaerobic lagoons before discharge, releasing a further large quantity of methane into the atmosphere in an uncontrolled manner.

CDM - Executive Board

page 3

The project activity will reduce greenhouse gas emissions by reducing methane emissions from the rotting EFB waste piles and anaerobic POME treatment lagoons.

Sustainable development contribution of the project activity

The project will contribute to sustainable development in the Malaysia Palm Oil Industry through:

- (1) Comprehensive recycling of palm oil process waste. The project activities encourage the effective use of bio-technology to deal with the large amount of agricultural/green waste from the palm oil process for the production of bio-organic fertilisers that will be recycled back to the plantations.
- (2) Due to the efficacy of these bio-organic fertilisers, this recycle process will enable a significant reduction in the use of chemical fertilisers by the plantations. This reduction in chemical fertilisers' usage will reduce the amount of these to be transported into these remote locations. Malaysia imports most of its chemical fertilisers. The use of these bio-organic fertilisers will also improve the soil conditions and plant health.
- (3) Bio-organic fertilizers reduce chemical fertilizer run off that is causing extensive problems in rivers and estuaries in Sabah and the Malaysian peninsula.

Environmental benefits and sustainable rural development

This project is in line with the Malaysian Government's direction in the just published 9th Malaysian Plan, in which the government encourages privately led sustainable development in agro-based industry and bio-technology through environmentally friendly waste treatment and recycling. Chapter 22 of the 9th Malaysian Plan states that: "Greater focus will be placed on preventive measures to mitigate negative environmental effects at source, intensifying conservation efforts and sustainable management of natural resources. Emphasis will be given to the fostering of closer cooperation between stakeholders in addressing environmental concerns."

The availability of a consistent supply of single-sourced uncontaminated bio-organic fertilisers will also contribute to the sustainable development in the agricultural sector especially in the production of greener/organic food crops in palm oil plantations and in local rural communities. The project activity also provides additional employment opportunities for local communities.

CDM - Executive Board

page 4

A.3. Project participants:

>>

Name of Party involved (*) ((host) indicates a host Party)	Private and/or public entity(ies) project participants (*) (as applicable)	Kindly indicate if the Party involved wishes to be considered as project participant (Yes/No)
Malaysia (host)	Inno Integrasi Sdn Bhd	No
	(Private Entity)	
UK	Climate Change Capital	No
	(Private Entity)	

^(*) In accordance with the CDM modalities and procedures, at the time of making the CDM-PDD public at the stage of validation, a Party involved may or may not have provided its approval. At the time of requesting registration, the approval by the Party(ies) involved is required.

A.4. Technical description of the <u>project activity</u>:

A.4.1. Location of the project activity:

>>

Malsa Palm Oil Mill

1 4 1 1	TT (D) ((')
A.4.1.1.	Host Party(ies):
/A.T.1.1.	11031 1 411111031.

>>

Malaysia

A.4.1.2.	Region/State/Province etc.:
----------	-----------------------------

>>

State of Sabah, Malaysia

A.4.1.3.	City/Town/Communit	v etc.
A.4.1	CILV/ LOWII/COIIIIIIIIIII	v eic:

>>

Near the town of Sandakan, Sabah

A.4.1.4. Detail of physical location, including information allowing the unique identification of this <u>project activity</u> (maximum one page):

>>

The waste treatment plant is located on-site, next to a palm oil mill owned and operated by Malsa Corporation Sdn Bhd ("Malsa") at Man Choon Estate, Km.7, Jln Beluran, Off Km.58, Jln. Labuk, Labuk-Sugut, Sandakan, Sabah.

CDM – Executive Board page 5

CDM – Executive Board

page 6

A.4.2. Category(ies) of project activity:

>>

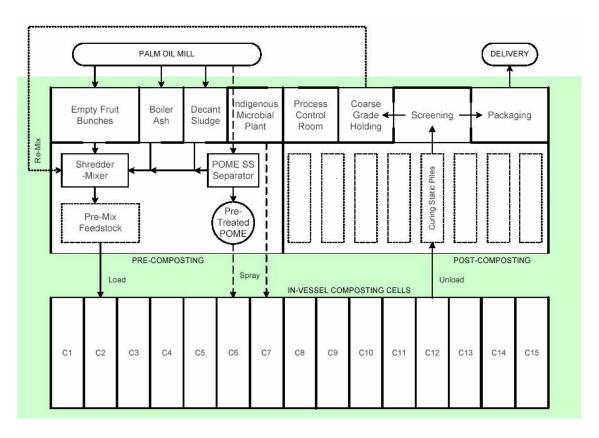
The category of the project activity is: 13 – Waste Handling and Disposal

A.4.3. Technology to be employed by the project activity:

>>

The two main technologies employed by the project activity, 1) In-Vessel biomass composting and 2) waste water pre-treatment using a suspended solids separator, are proven technologies, and are known to be environmentally friendly and safe. However, this will be the first time such processes have been used in an integrated technology for one-stop treatment on palm oil process wastes.

The project activity will involve the construction and operation of a waste treatment plant next to the existing Malsa palm oil mill, thereby reducing transport costs for the waste materials used in the treatment process. The waste treatment plant will consist of a pre-composting section, in-vessel composting, and post-composting sections with a total covered area of approximately 0.8 hectares. The plant layout is shown in the following figure.



CDM - Executive Board

page 7

Waste water treatment process

All of the raw POME discharge from the palm oil mill will be pre-treated via suspended solids separators. This process will separate suspended solids in POME to capture nutrient solids to feed into composting pre-mix and substantially reduce the BOD/COD of the pre-treated POME. The pre-treated POME will be injected into composting vessel in the automated process to maintain constant moisture content in the composting feedstock. As the In-Vessel composting process consumes some 60% of the pre-treated POME, the remaining 40% of de-sludged POME will be treated in aerobic lagoons and/or recycled back to the estate as irrigation water. In the aerobic lagoons or in land application the bulk of the remaining BOD/COD in the POME is converted to CO₂ without the formation of methane. The treatment plant process and follow up aerobic treatment of some 40% of the pre-treated POME essentially treats all of the POME effluent (including the decanter sludge – a first stage pre-treatment of the POME) under aerobic conditions.

In-Vessel biomass composting

The waste EFBs from the palm oil mill will be shredded to a predetermined size in the pre-composting section and then mixed with sludge (from both decanter and suspended solids removal treatment) and boiler ash. The resulting biomass mixture will then be transferred by front end loader into the In-Vessel composting tunnels and piled into heaps of approx 2 m height along the full width (6 m) and length (30 m) of the tunnels. Once filled the tunnel will be sealed off and the air blowers started under computer control to ensure optimum composting process conditions according to a pre-determined batch processing temperature schedule. The composting process is activated using a mixture of specially formulated microorganisms mixed with the pre-treated POME and sprayed on to the composting heap. The computer managed control system will enable completion of the composting process in the vessel in 2 to 4 weeks by careful control of oxygen levels in the biomass as well as the temperature and moisture levels. At the high temperatures in the process large quantities of POME are sprayed onto the composting waste and evaporated, thereby maintaining the optimum moisture levels. After 2 to 4 weeks the

CDM – Executive Board page 8

composted waste will be removed by a front end loader from the vessel and matured in piles for a further 7 days to allow the curing process to continue and temperature to reduce by natural cooling.

Feed Stock preparation

In-Vessel co-composting

Curing

After the maturation period the composted waste is mixed with special bio-formulations and then bagged for distribution to the plantation or other end users. The process will utilise 100% of the EFB, 100% of sludges (from decanter and suspended solids removal treatment) and 60% of the pre-treated POME. The In-Vessel co-composting process flow diagram is shown below.

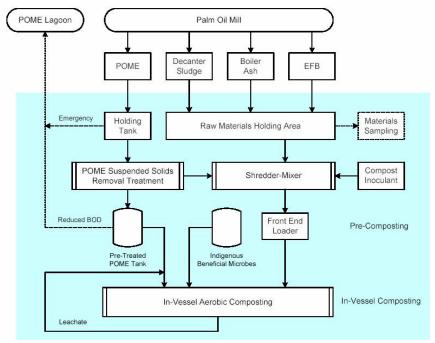


Diagram 1: In-Vessel co-composting process flow diagram

CDM – Executive Board

page 9

A.4.4 Estimated amount of emission reductions over the chosen crediting period:

>>

The total emission reductions of the project activities over the first crediting period of 10 years are expected to be 1,036,926 tonnes CO_2e .

Years	Annual estimation of emission reductions in tonnes of CO2e		
2008	56,425		
2009	78,616		
2010	93,491		
2011	103,462		
2012	110,146		
2013	114,626		
2014	117,629		
2015	119,642		
2016	120,992		
2017	121,896		
Total 2008 – Dec 2017	1,036,926		
Total number of crediting years	10 years		
Annual average over the crediting period of estimated reductions (tonnes of CO2e)	103,693		

A.4.5. Public funding of the project activity:

>>

No public funding is involved in these project activities

CDM – Executive Board page 10

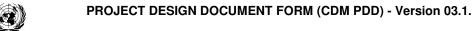
SECTION B. Application of a baseline and monitoring methodology

B.1. Title and reference of the <u>approved baseline and monitoring methodology</u> applied to the <u>project activity</u>:

>>

The approved baseline and monitoring methodology AM0039, version 1, 29 September 2006, "Methane emissions reduction from organic waste water and bioorganic solid waste using co-composting" is applied to this project activity.

B.2 Justification of the choice of the methodology and why it is applicable to the <u>project activity:</u>


>>

AM0039

This methodology is applicable as the project activities will avoid methane emissions that would have occurred in the current scheme of operations, from

- anaerobic degradation of the organic wastewater (POME) in open lagoons or storage tanks; and
- natural decay of bioorganic solid waste (EFB) in landfills.

Applicability criteria of AM0039	Project Activity
Organic wastewater and bioorganic solid waste can	The organic wastewater (POME) and bioorganic
be generated at separate locations;	solid waste (EFB, sludge, and boiler ash) are
	generated at the individual palm oil mill. The
	project activity will treat all these waste streams.
The bioorganic solid waste can be of a single type	The bioorganic solid waste component used in the
or multiple types mixed in different proportions.	calculation of the baseline is EFB. EFB is
The proportions and characteristics of different	weighted before entering the composting plant for
types of bioorganic waste processed in the project	billing purposes. The project has performed tests
activity can be determined, in order to apply a	on the physical and chemical characteristics of the
multiphase landfill gas generation model to estimate	EFB.
the quantity of landfill gas that would have been	
generated in the absence of the project activity;	
Project activities shall employ co-composting	The project activities employ co-compositing
process for treatment of the organic wastewater and	process for 100% of the EFB, 100% of POME
the bioorganic waste;	sludges and 60% of the pre-treated POME output
	from the palm oil mill

CDM – Executive Board

page 11

B.3. Description of the sources and gases included in the project boundary

>>

The project boundary includes all GHG emission sources from anaerobic process including open lagoons or storage tanks treating organic wastewater, the landfill site where the bioorganic solid waste would be disposed of in the absence of project activity, the proposed aerobic process, transportation and auxiliary equipment.

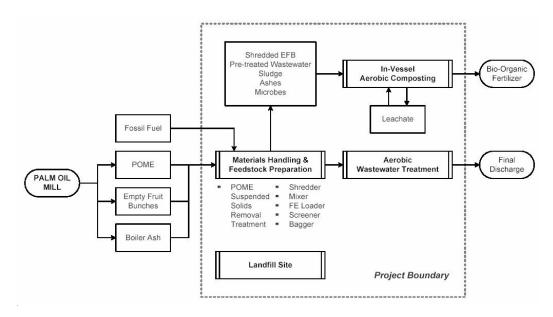


Table 1: Summary of gases and sources included in the project boundary,

	Source	Gas	Included?	Justification / Explanation
		CO ₂	No	CO ₂ emissions from biomass decay in landfills is considered GHG neutral.
Baseline	Biomass disposed	CH ₄	Yes	Methane emission from biomass decay in the landfills
	in landfills	N ₂ O	No	Not significant. Excluded for simplification and conservativeness.
		CO ₂	No	CO ₂ emissions from biomass source are considered GHG neutral.
	Open Lagoons	CH ₄	Yes	Methane emission from anaerobic process
		N ₂ O	No Not significant. Excluded for simplification and conservativeness.	
		CO ₂	No	Emission from combustion of fossil fuel in transport vehicles. Not significant. Excluded for simplification and conservativeness
	Transportation	CH ₄	No	Not significant. Excluded for simplification and conservativeness
		N ₂ O	No	Not significant. Excluded for simplification and conservativeness
	Auviliary	CO ₂	No	Baseline includes the use renewable energy sources (biomass) for electricity production

CDM – Executive Board page 12

CH ₄	Not significant. Excluded for simplification and conservativeness
N ₂ O	Not significant. Excluded for simplification and conservativeness

	Source	Gas	Included?	Justification / Explanation
		CO ₂	No	CO ₂ emissions from composting process are considered GHG neutral.
ities	Composting	CH ₄	Yes	Methane emissions from anaerobic pockets during composting process
	process	N ₂ O	Yes	N ₂ O emissions from loss of N ₂ O-N during composting process and during application of the compost
		CO ₂	No	CO ₂ emission from biomass source and considered GHG neutral.
	Leaked Waste Water	CH4	No	There is no methane emission from anaerobic process of wastewater collected after the project activity as all the water is pre-treated and managed aerobically or used for irrigation
ctiv		N ₂ O	No	Not significant, excluded for simplification
Project Activities	Additional	CO ₂	No	Emission from combustion of fossil fuel in transport vehicles. Not significant, excluded for simplification
Pro	Transportation due	CH ₄	No	Not significant, excluded for simplification
	to Project Activity	N ₂ O	No	Not significant, excluded for simplification
		CO ₂	Yes	Emissions from fossil fuels used in the compost manufacturing process
	Auxiliary	CH ₄	No	Not significant, excluded for simplification
	Equipment	N ₂ O	No	Not significant, excluded for simplification

B.4. Description of how the <u>baseline scenario</u> is identified and description of the identified baseline scenario:

>>

As indicated in the combined tool to demonstrate the baseline scenarios and demonstrate additionality the most plausible baseline scenario shall be determined for both, organic wastewater and bioorganic solid waste, separately.

Step 1: Listing a range of potential baseline options

Step 1.a. For bio-organic solid waste:

- 1) Waste used for co-composting (the project activity implemented without CDM);
- 2) Uncontrolled open burning
- 3) Waste returned to the plantation for mulching
- 4) Waste incinerated in controlled conditions or used for energy purposes including power generation
- 5) Continuation of waste disposed on a landfill without the capture of landfill gas;

CDM – Executive Board page 13

- 6) Waste disposed on a landfill where landfill gas is captured and flared;
- 7) Waste disposed on a landfill where landfill gas is captured and electricity generated;
- 8) Waste disposed on a landfill where landfill gas is captured and delivered to nearby industries for heat generation.

For organic wastewater:

- 1) Continuation of current practice of using anaerobic lagoons or open storage tanks without methane recovery and flaring;
- 2) Wastewater used for co-composting (the project activity implemented without CDM);
- 3) Anaerobic lagoons or storage tanks with methane recovery and flaring;
- 4) Anaerobic lagoons or storage tanks with methane recovery and utilization for electricity or heat
- 5) generation;
- 6) Building of a new anaerobic lagoon or open storage tanks without methane recovery and flaring;
- 7) Building of a new anaerobic lagoon or open storage tanks with methane recovery and flaring;
- 8) Direct release of waste to nearby waterways
- 9) Aerobic treatment facilities

Step 1.b: Eliminate alternatives that are not complying with applicable laws and regulations

For bio-organic solid waste, the uncontrolled open burning is illegal and not permitted; hence this scenario will not be taken into consideration throughout this analysis.

For organic waste water, the direct release of waste water to nearby water way is illegal and not permitted; hence this scenario will not be taken into consideration in the following analysis.

Step 2: Barrier Analysis

Step 2.a.&b. Eliminate alternatives that face prohibitive barriers

Scenarios that face prohibitive barriers will be eliminated by applying step 2 of the latest version of the "combined tool to demonstrate the baseline scenarios and demonstrate additionality" agreed by the CDM Executive Board. The main types of barriers for project implementation can be classified as technical, financial, social and business culture. The technical and financial barriers are considered as the most significant barrier in any business investment decision. These barriers, either real or perceived, can lead to cultural barriers such as barrier against change in "common practice" even if the technical and financial barriers have been overcome.

The plausible alternative project activities identified in Step 1 are then analysed by assessing them against the identified barriers.

For bio-organic solid waste

Waste used for co-composting (the project activity implemented without CDM);

Without CDM support this is not a plausible alternative, due to business culture, financial and technical barriers.

As palm oil mills are profitable, especially with current high palm oil prices, and dispose of all waste in line with industry and environmental regulations, there is consequently limited incentive to change business practice.

Moreover, this is an early deployment of this technology in Malaysia in the Palm Oil industry. While the individual technologies that will be used in the process are proven in other applications, the joint application to treat these waste streams has yet to be accepted by the palm oil industry. It will provide an opportunity for future technology transfer within the industry and consequently will bring exposure to all

page 14

CDM – Executive Board

the technology and financial risks that are associated with being the early adopter of a new technology application. To develop the project without the assistance of CDM finance, mill owners would have to risk their own investment capital, increase operating costs, significantly reduce medium term profitability and change business practices, without a driving business need.

CDM was developed with just such projects in mind, whereby CDM finance reduces the risk of introducing and applying new low carbon emission technologies until the penetration achieves a critical mass in the industry that changes the prevailing business practice.

Waste returned to the plantation for mulching

The Malsa plantations do not use EFBs for mulching, as it has limited fertilizer value, can remove nitrogen from the soil and the cost of application/distribution into the estate is relatively high as the volume to be mulched and distributed on a daily basis is substantial. It can also spread plant diseases which is a constant source of concern for all palm oil growers. Financial barriers and business culture barriers are high for the adoption of this scenario. Moreover, it does not solve the problem of aerobically co-disposing of the POME waste. It is not considered as a plausible alternative.

Waste incinerated in controlled conditions or used for energy purposes including power generation. The characteristics of EFB – a high moisture and low calorific heating value – make it difficult to use as fuel for steam and power generation. Advanced technologies and additional measures to pre-treat the EFB to reduce the moisture content to below 40% are required. The history of biomass use in the palm oil industry is that milling factories prefer to use fibre and shells for boiler fuel due to their higher heating value, and little or no use has been made of EFB for this purpose, except where additional revenue from the CDM makes such an alternative financially viable. The Malsa mill generates all of its energy and power needs from the mesocarp fibre and shells that it produces and its remote location does not favour power generation for other users. Hence this alternative is not viable for this mill, and again it does not solve the problem of aerobically co-disposing of the POME waste.

Continuation of waste disposed on a landfill without the capture of landfill gas;

In earlier times this biomass was burned in the open air leading to extensive air pollution from the heavy white smoke that was produced. As a result the Malaysian Government has banned open air burning of EFB. However, many mills face a problem in disposing the waste as they do not possess any plantation, but only operate a mill. Plantation owners supplying the fresh palm oil fruit bunches are typically not interested in collecting the waste at the mill and disposing of it in their plantation. Thus some of the mills are left with only the option to dispose the EFB in piles to naturally decompose at their mill site, or into natural valleys where it decays, emitting biogas containing methane, a potent greenhouse gas. Due to the remote locations of these landfills the Government has not promulgated regulations requiring the capture and flaring of this gas for safety or other environmental reasons. The current practice of waste treatment of the bio-organic solid waste including the EFB, decanter sludge and boiler ashes at Malsa is to transport the waste from mill site and deposit in a managed landfill. The palm oil mill owner incurs the cost of transporting the waste to the landfill. This is a plausible alternative for disposal of the biomass waste from the palm oil mill and represents business as usual.

Waste disposed on a landfill where landfill gas is captured and flared;

Waste disposed on a landfill where landfill gas is captured and electricity generated;

Waste disposed on a landfill where landfill gas is captured and delivered to nearby industries for heat generation.

Due to the remote locations of most palm oil mills and the cost involved in installing systems to capture the landfill gas, there were no landfills that have such facilities and it is not a regulatory requirement for the palm oil mill owners to install such facilities in Malaysia. Moreover, in this remote location there is no market for any electricity or heat generated by capturing and use of the LFG. Malsa mill already has excess power capacity from in-mill boilers using mesocarp fibres and shells as fuels. The excess power generation capacity can be absorbed by the proposed in-vessel co-composting plant.

CDM - Executive Board

page 15

For organic waste water

Continuation of current practice of using anaerobic lagoons or open storage tanks without methane recovery and flaring

Wastewater treatment of POME in an open pond system more than 5 m in depth is the prevalent practice in palm oil mills in Malaysia. Despite numerous revisions to the allowable discharge level, the combination of anaerobic ponds and aerobic/facultative ponds has been able to meet the current permitted discharge level of biological oxygen demand (BOD) of 5,000mg/l for land application and 100mg/l for water way discharge. Pond systems are the technology of choice in the Malaysian palm oil industry as they are very low risk, and utilise a low-tech process suitable for remote installation that is typical of palm oil mills in the country. It represents business as usual at Malsa and will continue in the absence of a CDM financed alternative.

<u>Wastewater used for co-composting (the project activity implemented without CDM):</u> Without CDM support this is not a plausible alternative for treatment of the POME as has been argued for bio-organic solid waste (see Step 3, "For bio-organic waste").

Anaerobic lagoons or storage tanks with methane recovery and flaring;

Anaerobic lagoons or storage tanks with methane recovery and utilization for electricity or heat generation;

Though anaerobic ponds are used in existing wastewater treatment systems, these are more like retaining ponds with minimal interference from the operator. As in the case of the biomass these alternatives are not mandated by Malaysian Government regulations and therefore have not been adopted by the Malaysian Palm Oil Industry. In addition, in this remote location there is no market for electricity or heat generated by the capturing of biogas from these lagoons

Building of a new anaerobic lagoon or open storage tanks without methane recovery and flaring; Building of a new anaerobic lagoon or open storage tanks with methane recovery and flaring; There are existing lagoons so there is no need to build a new facility to treat wastewater.

Aerobic treatment facility

Aerobic waste water treatments systems are suitable for relatively low BOD/COD wastes but not for the high BOD/COD wastes generated by the palm oil industry. They are used for polishing treatment after anaerobic treatment to reduce the BOD/COD to a level that is acceptable for discharge to surface waters. A fully aerobic waste water treatment process for raw POME is not technically feasible, nor would it be economically feasible at the Malsa site.

In Summary:

For Malsa the most plausible baseline scenario for treatment of the wastewater is the continuation of the use of open anaerobic lagoons or storage tanks throughout the crediting period and the most plausible baseline for treating bioorganic waste is the continuation of waste disposal at a managed landfill.

B.5. Description of how the anthropogenic emissions of GHG by sources are reduced below those that would have occurred in the absence of the registered CDM project activity (combined tool to demonstrate the baseline scenarios and demonstrate additionality):

CDM – Executive Board page 16

Step 3: Investment analysis. Compare economic attractiveness of remaining alternatives

It has been shown that the only plausible scenario for the palm oil mill is to continue with business as usual for waste and wastewater treatment, which is standard industry practice and complies with all environmental regulation. There are significant technology and financial risks inherent in investing in the project and successful current business practice does not warrant exposure to such risks. Therefore it has been proved that the project is additional, the CDM incentive is driving the project activity and the project would not be undertaken without CDM financing.

However, an overview investment analysis is included to show the impact of CDM finance on the project being undertaken and how CDM financing is required to achieve minimum financial returns for the project.

The palm oil sector is now profitable industry given high palm oil prices, due to additional demand from biodiesel refiners. The industry therefore has high expectation of returns on investment and investment payback periods. Studies on the CDM potential in waste sectors in Malaysia consider IRRs of 15% to be applicable as a benchmark for Malaysian CDM projects, and previous validated PDDs use this figure. Studies note however that the palm oil sector expects IRRs in excess of this, due to its high profitability. Therefore a project benchmark IRR of 15% has been used for conservativeness.

The project requires significant upfront investment in the composting vessel and related equipment, with revenue generated from selling fertilizer to the plantation. An overview of the NPVs and IRRs for the project, both with and without CDM revenue is shown below:

Project scenario	<u>NPV</u>	<u>IRR</u>
Without CDM financing	- MYR 4.7 million*	-3.6%*
With CDM financing	MYR 4.3 million*	27.0%*

^{*}Figures shown before taxes

There is a negative return for the project, without including CDM financing, so the industry benchmark is not relevant.

Furthermore, the sensitivities shown below, indicate that either increasing revenue, or reducing costs, by more than 10% would be required to obtain a positive IRR in the absence of CDM financing and returns would clearly continue to be well below the benchmark.

CDM - Executive Board

page 17

IRR sensitivities tables*

	Change in fertilizer revenue							
	-10% -5% 0% 5% 10%							
Without CDM								
financing	-18.5%	-10.3%	-3.6%	2.4%	7.7%			
With CDM financing	19.6%	23.4%	27.0%	30.5%	33.9%			

	Change in operating costs									
	-10%	-10% -5% 0% 5% 10%								
Without CDM										
financing	5.6%	1.2%	-3.6%	-8.8%	-14.8%					
With CDM financing	32.6%	32.6% 29.8% 27.0% 24.1% 21.2%								

^{*}Figures shown before taxes

Step 4: Assessment whether the identified baseline scenario is common practice

The existing solid waste disposal at landfill and POME wastewater treatment system at the mill is able to comply with the legal discharge standards as stipulated by the Department of Environment, Malaysia. The open anaerobic pond system is the most common and standard practices at most palm oil mills in Malaysia. There is no legal requirement or financial incentive to compel the Malsa mill owners to implement other treatment options that will require additional investment. For Malsa the most plausible baseline scenario for treatment of the wastewater is the continuation of the use of open anaerobic lagoons or storage tanks throughout the crediting period and the most plausible baseline for treating bioorganic waste is a managed landfill.

Step 5: Impact of CDM Registration

CDM Registration of this project activity overcomes the financial and technical barriers that have so far prevented investors with experience in aerobic co-composting waste treatment and bio-organic fertilizers to come together to build and operate a treatment facility which will eliminate methane emissions from the disposal of biomass and organic liquid wastes that represent business as usual at the Malsa site. The experience brought by carbon investors together with their technology expertise and technical and financial resources will make possible the implementation of the proposed CDM project.

B.6. Emission reductions:

B.6.1. Explanation of methodological choices:

>>

The methodology to be used is AM0039 "Methane emissions reduction from organic waste water and bioorganic solid waste using co-composting". The proposed project activity meets all the applicability requirements stipulated by the approved methodology AM0039.

Baseline emissions

The following types of baseline emissions will be accounted under this methodology.

- (a) Methane (CH4) emissions from waste water in anaerobic lagoons or open storage tanks;
- (b) Methane (CH4) emissions from decay of bioorganic solid waste in disposal sites;
- (c) CO2 emissions from transportation of organic wastewater and bioorganic solid waste;
- (d) CO2 emissions from fossil fuels used for energy requirements and
- (e) CO2 emissions from grid electricity consumption.

Total baseline emissions are expressed as:

CDM – Executive Board page 18

$$BE_v = BE_{CH4,WW,v} + BE_{CH4,SW,v} + BE_{CO2,Trans,v} + BE_{CO2,FF,v} + BE_{CO2,Elec,v}$$

where:

BE_y is the total baseline emissions during the year y, (tCO2e)

BE_{CH4,WW,y} is the baseline methane emissions from existing open lagoon or open storage tanks

during the year y (tCO2e)

BE_{CH4,SW,y} is the baseline methane emissions from decay of bio-organic solid waste during the year

y (tCO2e)

BE_{CO2.Trans.v} is the baseline CO2 emissions from transportation of organic wastewater and bioorganic

solid waste during the year y (tCO2e)

BE_{CO2,FF,v} is the baseline CO2 emissions from use of fossil fuels during the year y (tCO2)

BE_{CO2,Elec,y} is the baseline CO2 emissions from grid electricity consumption during the year y

(tCO2)

The above emissions are calculated as explained below:

(a) Methane (CH4) emissions from wastewater in open storage systems ($BE_{CH4,WW,y}$)

The baseline methane emissions from anaerobic lagoons or storage tanks are estimated based on the chemical oxygen demand (COD) of the effluent that would enter the lagoon in the absence of the project activity, the maximum methane producing capacity (B_o) and a methane conversion factor (MCF) that expresses what proportion of the effluent would be anaerobically digested in the open lagoons.

The baseline methane emissions are calculated using the following equation:

$$BE_{CHAWWm} = COD_{available m} \cdot B_o \cdot MCF_{baseline} \cdot GWP_{CHA}$$

where:

BE_{CH4.WW,m} is the baseline monthly methane emissions from wastewater (tCO2e)

COD_{available,m} is the monthly Chemical Oxygen Demand available for conversion which is equal to the

monthly COD of the wastewater used for co-composting COD_{baseline,m} plus COD

carried on from the previous month (tCOD)

COD_{baseline,m} is the monthly Chemical Oxygen Demand of effluent entering anaerobic lagoons or

storage tanks (measured in the project activity) (tCOD)

B_o is the maximum methane producing capacity of the inlet effluent (tCH4/tCOD)

MCF_{baseline} is the methane conversion factor of the baseline storage system (fraction)

GWP_{CH4} is the Global Warming Potential of methane, default value 21

COD_{baseline,m} is to be directly measured in the project as the baseline activity level since the effluent that goes into the anaerobic lagoon or storage tanks in the baseline situation is the same as the one that goes

CDM – Executive Board page 19

into the project. $COD_{baseline,m}$ is calculated as the product of $COD_{c,baseline}$ concentration (kgCOD/m³) in the wastewater input to the project and the flow rate F_{dig} (m³/month).

Since the effluent resides in the Malsa lagoons for more than 30 days, the amount of organic matter available for conversion to methane $COD_{available,m}$ is assumed to be equal to the amount of organic matter produced during the month ($COD_{baseline,m}$ input to the project) plus the organic matter that may remain in the system from previous months.

The amount of organic matter consumed during the month is equal to the amount available for conversion $COD_{available,m}$ multiplied by $MCF_{monthly}$. The amount of organic matter carried over from one month to the next equals to the amount available for conversion minus the amount consumed and minus the amount removed from the anaerobic lagoon or storage tank. In the case of the emptying of the anaerobic lagoon or storage tank, the accumulation of organic matter restarts with the next inflow.

The default IPCC value for B_o is 0.25kg CH4/kg COD. Taking into account the uncertainty of this estimate, a value of 0.21 kg CH4/kg COD is assumed for this project activity as a conservative assumption for B_o .

 $MCF_{baseline,m}$ is estimated as the product of the fraction of anaerobic degradation due to depth (f_d) and the fraction of anaerobic degradation due to temperature $(f_{t,monthly})$:

$$MCF_{baseline,m} = f_d \cdot f_{t,monthly} \cdot 0.89$$

where:

f_d is the fraction of anaerobic degradation due to depth as following Table

 $f_{t,monthly}$ is the fraction of anaerobic degradation due to temperature

0.89 is an uncertainty conservativeness factor (for an uncertainty range of 30% to 50%) to account for the fact that the equation used to estimate $f_{t,monthly}$ assumes full anaerobic degradation at 30 °C.

	Deep > 5m	Medium Depth 1-5m	Small depth < 1 m
Fraction of degradation under anaerobic conditions due to depth of anaerobic lagoons or storage tank	70%	50%	0

f_{t,monthly} is calculated as follows:

$$f_{t,monthly} = \exp \left[\frac{E \cdot (T_2 - T_1)}{R \cdot T_1 \cdot T_2} \right]$$

where:

E Activation energy constant (15,175 cal/mol)
T₂ Ambient temperature (Kelvin) for the climate

 T_1 303.16 (273.16° + 30°)

R Ideal gas constant (1.987 cal/ K mol).

- (1) The monthly average temperature for the area is obtained from published national weather service information (See Annex 3).
- (2) Monthly temperatures are used to calculate a monthly van't Hoff Arrhenius 'f_{t,monthly}' factor above.

CDM – Executive Board page 20

A minimum temperature of 10 $^{\circ}$ C is used. Months where the average temperature is less than 10 $^{\circ}$ C, $f_{t,monthly} = 0$. The value of $f_{t,monthly}$ to be used cannot exceed unity. Monthly values are used in the calculations for this project activity.

(b) Methane (CH4) emissions from decay of bioorganic solid waste in disposal sites (BE_{CH4,SW,y})

The amount of methane that is generated from the biomass solid waste $BE_{CH4, SW, y}$ is calculated for each year with a multi-phase model. The model is based on a first order decay equation. In the calculation of type of waste streams, we are only using EFB as the only waste stream, although, we also include sludge and boiler ashes as well. The model calculates the methane generation based on the actual waste streams $A_{j,x}$ diverted from the landfill in the most recent year and all previous years since the project start (x=1 to x=y).

The amount of methane produced in a year is calculated as follows:

$$BE_{\mathit{CH4,SW},y} = \left[\varphi \cdot \frac{16}{12} \cdot F \cdot DOC_f \cdot MCF \cdot GWP_{\mathit{CH4}} \cdot \sum_{x=1}^{y} \sum_{j=A}^{D} A_{j,x} \cdot DOC_j \cdot \left(1 - e^{-k_j}\right) \cdot e^{-k_j(y-x)} \right] - MD_{\mathit{reg}}$$

where:

BE CH4,SW,y is the amount of methane produced in the landfill in the absence of the project activity

from biomass solid waste used in composting during the year y (tCO2e)

MD_{reg} is methane that would be destroyed in the absence of the project activity in year y (tCH4)

φ is the model correction factor (default 0.9) to correct for the model-uncertainties

F is the fraction of methane in the landfill gas, IPCC default value 0.5

DOC_i is the percentage of degradable organic carbon (by weight) in the waste type j

DOC_f is the fraction of DOC that can decompose, default value 0.77

MCF is the Methane Correction Factor (fraction)

GWP_{CH4} is the global warming potential for Methane, IPCC default value 21

 $A_{j,x}$ is the amount of organic waste type j prevented from disposal in the landfill during the

year x (tons)

kj is the decay rate for waste stream type j

is the waste type distinguished into the waste categories (from A to D), as illustrated in

the Table 4 below.

x is the year during the crediting period: x runs from the first year of first crediting period

(x=1) to the year for which emissions are calculated (x=y)

y is the year for which methane emissions are calculated

In cases where regulatory or contractual requirements do not specify $MD_{reg,y}$, an Adjustment Factor (AF) shall be used and justified, taking into account the project context. In doing so, the project participant should take into account that some of the methane generated by the landfill may be captured and destroyed to comply with other relevant regulations or contractual requirements, or to address safety and odor concerns.

$$MD_{reg,y} = MB_y * AF$$

where:

AF is Adjustment Factor for MBy (%)

AF is defined as the ratio of the destruction efficiency of the collection and destruction system mandated by regulatory or contractual requirement to that of the collection and destruction system in the project activity.

CDM - Executive Board

page 21

Model Correction Factor (φ)

Oonk et el. have validated several landfill gas models based on 17 realized landfill gas projects3. The mean relative error of multi-phase models was assessed to be 18%. Given the uncertainties associated with the model and in order to estimate emission reductions in a conservative manner, a discount of 10% should be applied to the model results, i.e. $\varphi = 0.9$.

Methane correction factor (MCF)

The methane correction factor (MCF) accounts for the fact that unmanaged landfills produce less methane from a given amount of waste than managed landfills, because a larger fraction of waste decomposes aerobically in the top-layers of unmanaged landfills. The proposed default values for MCF are listed in the table below.

Solid Waste Disposal Site (SDWS) Classification and Methane Correction Factors

Type of site	MCF default values
Managed site	1.0
Unmanaged site – deep (> 5 m waste)	0.8
Unmanaged site – shallow (< 5 m waste)	0.4

Note: Managed SWDS must have controlled placement of waste (i.e. waste directed to specific deposition areas, a degree of control of scavenging and a degree of control of fires) and will include some of the following: cover material, mechanical compacting or levelling of waste.

Source: Table 5.1 in the 2000 IPCC Good Practice Guidance

Degradable carbon content in waste (DOC_i) and decay rates (k_i)

In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (module 6), default values for degradable organic carbon are presented, as shown in the table below. These values should be used by project participants in the case no specific data are available. However, in the case of this project activity specific information will be available to provide more accurate values as discussed below (Please see section B.7 on kj evaluation)

Waste stream decay rates (k_j) and associated IPCC default values for DOC_j

Waste stream A to E	Per cent DOC _j	Decay-rate (kj)
	(by weight)	
A. Paper and textiles	40	0.023
B. Garden and park waste and other (non-food)	17	0.023
putrescibles		
C. Food waste	15	0.231
D. Wood and straw waste*	30	0.023
E. Inert material	0	0

*Excluding lignin-C

The most rapid decay rates are associated with high moisture conditions and rapidly degradable material such as food waste. The slower decay rates are associated with dry site conditions and slowly degradable waste such as wood or paper. For this methodology, food waste (C) is considered as fast degradable waste, while paper and textiles (A), Garden and park waste and other (non-food) putrescibles (B), Wood and straw waste (D) are considered as slow degradable waste. Inert materials (E) are assumed not to degrade (k=0).

If local measurements have been undertaken for decay rates and if these are documented, and can be

CDM – Executive Board page 22

considered as more reliable, these may be used instead of the default-values in the above table. Project participants should consider future revisions to the decay-rate constants (k_j) when available, including revisions of IPCC guidelines.

The composition of the waste shall be determined by sampling. The composition of the waste must be defined in accordance with the waste type categories in the above table, measuring the fractions of each of the following waste types: paper and textile (A); garden and park waste and other (non-food) organic putrescibles (B); food waste (C); wood and straw (D) and; inert/inorganic waste (E). The size and frequency of sampling should be statistically significant with a maximum uncertainty range of 20% at a 95% confidence level. As a minimum, sampling should be undertaken four times per year.

The amount of organic waste type j ($A_{j,x}$) is calculated based on the total amount of waste collected in the year x (A_x) and the fraction of the waste type in the samples ($p_{n,j,x}$), as follows:

$$A_{j,x} = A_x \cdot \frac{\sum\limits_{n=1}^{z} p_{n,j,x}}{z}$$

where:

 $A_{i,x}$ is amount of organic waste type j prevented from disposal in the year x (tonnes/year)

 A_x is amount of total organic waste collected during the year x (tonnes/year) $p_{n,j,x}$ is fraction of the waste type j in the sample n collected during the year x

z is number of samples taken during the year x

Calculation of F

The project participant shall determine F with the following order of preference:

- 1. Measure F on an annual basis as a monitoring parameter, at a landfill in the proximity of the treatment plant, receiving comparable waste as the treatment plant receives.
- 2. Measure *F* once prior to the start of the project activity at a landfill in the proximity of the treatment plant, receiving comparable waste as the treatment plant will receive.
- 3. In case there is no access to a landfill, the project participants should apply the conservative default value of 0.5, being the lower end of IPCC range of 0.5 0.6.

Fraction of degradable organic carbon dissimilated (DOCf)

The decomposition of degradable organic carbon does not occur completely and some of the potentially degradable material always remains in the site even over a very long period of time. The revised IPCC Guidelines propose a default value of 0.77 for DOCf. A lower value of 0.5 should be used if lignin-C is included in the estimated amount of degradable organic carbon.

(c) CO2 emissions from transportation of organic wastewater and bioorganic solid waste $(BE_{CO2,Trans,y})$

The baseline emissions from transportation are to be calculated using distance travelled by trucks and the fuel emission factor, as follows:

$$BE_{\textit{CO2,Trans},y} = \sum_{i} N_{\textit{vehicles},i,y} \cdot Dist_{i,y} \cdot FC_{i,\textit{Trans}} \cdot NCV_{i} \cdot EF_{\textit{CO2},i}$$

where:

 $N_{\text{vehicles,i,y}}$ is the number of vehicle trips used for transportation, with similar loading capacity Dist_{i,y} is the average distance per trip travelled by transportation vehicles type i in the baseline scenario during the year v (km)

 FC_i is the vehicle fuel consumption in volume or mass units per km for vehicle type i

 NCV_i is the net calorific value of fuel type i in TJ per volume or mass units

CDM – Executive Board page 23

EF_{CO2,i} is the CO2 emission factor of the fossil fuel type i used in transportation vehicles, (tCO2e/TJ)

(d) CO2 emissions from fossil fuels used for energy requirements ($BE_{CO2,FE,y}$)

CO2 emissions from fossil fuel used in the baseline for energy requirements such as heating shall be calculated as follows:

$$BE_{CO2,FF,y} = FC_{i,y} \cdot NCV_i \cdot EF_{CO2,i} \cdot OXID_i$$

where:

 $FC_{i,y}$ is the baseline fossil fuels consumed of type i for energy requirements during the year y

in mass or volume units

 NCV_i is the Net Calorific Value (energy content) in TJ of fuel type i, per mass unit or volume

unit

 $EF_{CO2,i}$ is the CO2 emission factor per unit of energy of the fuel i (tCO2e/TJ)

OXID_i is the oxidation factor of the fuel (see page 1.29 in the 1996 Revised IPCC Guidelines

for default values),

Where available, local values of NCV_i and EF_{CO2,i} should be used. If no such values are available, country specific values (see e.g. IPCC Good Practice Guidance) are preferable to IPCC world-wide default values.

(e) CO2 emissions from grid electricity consumption ($BE_{CO2,Elec,y}$)

In case electricity is consumed for energy requirements in the baseline, CO2 emissions from electricity consumption shall be calculated as follows:

$$BE_{CO2,Elec,v} = EC_v \cdot EF_{GridElec,v}$$

where:

 EC_y is the baseline electricity consumption during the year y (MWh) $EF_{GridElec,y}$ is the grid electricity emission factor for the year y (tCO₂/MWh)

In cases where electricity is purchased from the grid, the emission factor $EF_{GridElec,y}$ should be calculated according to methodology ACM0002 ("Consolidated baseline methodology for grid-connected electricity generation from renewable sources"). If electricity consumption is less than small scale threshold of 15 GWh/yr, AMS. I.D.1 may be used.

Project emissions

The following types of project emissions will be accounted under this methodology:

- (a) N₂O emissions from composting process
- (b) CH₄ emissions from composting process
- (c) CH₄ emissions from leaked waste water
- (d) CO₂ emissions from transportation
- (e) CO₂ emissions from fossil fuels consumption
- (f) CO₂ emissions from grid electricity consumption

Total project emissions are expressed as

CDM – Executive Board page 24

$$PE_{y} = PE_{N2O,Comp,y} + PE_{CH4,Comp,y} + PE_{CH4,Bww,y} + PE_{CO2,Trans,y} + PE_{CO2,FF,y} + PE_{CO2,Elec,y}$$

where:

PE_v is the total project emissions during the year y, (tCO2e)

PE N2O, Comp.y is the N2O emissions from composting of bio-organic solid waste during the year y

(tCO2e)

PE CH4, Comp.y is the CH4 emissions from composting of bio-organic solid waste during the year y

(tCO2e)

PE CH4, Bww,y is the CH4 emissions from leaked waste water discharged after the project activity during

the year y (tCO2e)

PE CO2.Trans.y is the CO₂ emissions from transportation in the project situation during the year y

(tCO2e)

PE CO2,FF.y is the CO2 emissions from use of fossil fuels in the project situation during the year y

(tCO2)

PE CO2. Elec. v is the CO2 emissions from grid electricity consumption in project situation during the

year y (tCO2)

The above emissions will be calculated as explained below:

(a) N_2O emissions from composting ($PE_{N2O,Comp,y}$):

N₂O emissions from composting during the year y are calculated as follows:

During the storage of waste in collection containers as part of the composting process itself and during the application of compost, N_2O emissions might be released. A default N_2O emission factor of 0.043 kg N_2O per tonne of compost and calculate emissions as follows:

$$PE_{N2O,Comp,y} = Q_{Compost,y} \cdot EF_{N2O,Comp} \cdot GWP_{N2O}$$

where:

 $\begin{array}{ll} Q_{Compost,y} & \text{is the total quantity of compost produced during the year y, (tons of compost)} \\ EF_{N2O,Comp} & \text{is the emission factor for N2O emissions from composting process (tN2O/ton of tons)} \end{array}$

compost)

GWP $_{\rm N2O}$ is the global warming potential of N2O, default value 310

(b) CH_4 emissions from composting ($PE_{CH4,Comp,v}$):

During the composting process, aerobic conditions are neither completely reached in all areas nor at all times. Pockets of anaerobic conditions – isolated areas in the composting heap where oxygen concentrations are so low that the biodegradation process turns anaerobic – may occur. The emission behavior of such pockets is comparable to the anaerobic situation in a landfill. This is a potential emission source for methane similar to anaerobic conditions which occur in unmanaged landfills. Through predetermined sampling procedures the percentage of waste that degrades under anaerobic conditions can be determined. Using this percentage, project methane emissions from composting process are calculated, as follows:

CDM – Executive Board page 25

$$PE_{CH4,Comp,y} = PE_{CH4,Anaerobic,y} \cdot GWP_{CH4} \cdot S_{a,y}$$

where:

PE_{CH4,Anaerobic,y} is the quantity of methane that would be generated from anaerobic pockets in the

composting process, during the year y (tCH₄)

GWP_{CH4} is the global warming potential of CH₄, default value 21

S_{a,y} is the share of waste that degrades under anaerobic conditions in the composting plant

during the year y (%)

The amount of methane that is generated in anaerobic pockets ($PE_{CH4,Anaerobic,y}$) is calculated for each year with a multi-phase model. The model is based on a first order decay equation. It differentiates between the different types of waste j with respectively different decay rates k_j (fast, moderate, slow) and fraction of degradable organic carbon (DOC_j). The model calculates the methane generation based on the actual waste streams $A_{project,j,x}$ disposed in the most recent year (y) and all previous years since the project start (x=1 to x=y). The amount of methane produced is calculated as follows:

$$PE_{\mathit{CH4,Anaerobic},y} = \varphi \cdot \frac{16}{12} \cdot F \cdot DOC_f \cdot MCF \cdot GWP_{\mathit{CH4}} \cdot \sum_{x=1}^{y} \sum_{i=1}^{D} A_{\mathit{project},j,x} \cdot DOC_j \cdot \left(1 - e^{-k_j}\right) \cdot e^{-k_j(y-x)}$$

Variables used in the above equation are analogous to those of the similar equation above.

Calculation of $S_{a,y}$:

 $S_{a,y}$ is determined by a combination of measurements and calculations. Bokhorst et al6 and Richard et al show that if oxygen content is below 5% - 7.5%, aerobic composting processes are replaced by anaerobic processes. To determine the oxygen content during the process, project participants shall measure the oxygen content according to a predetermined sampling scheme and frequency.

These measurements should be undertaken for each year of the crediting period and recorded each year. The percentage of the measurements that show oxygen content below 10%8 is presumed to be equal to the share of waste that degrades under anaerobic conditions (i.e. that degrades as if it were landfilled), hence the emissions caused by this share are calculated as project emissions *ex-post* on an annual basis:

$$Sa = S_{OD} / S_{total}$$

where:

S_{OD} is the number of samples per year with an oxygen deficiency (i.e. oxygen content below

10%)

 S_{total} is the total number of samples taken per year, where S_{total} should be chosen in a manner

that ensures the estimation of S_a with 20% uncertainty at a 95% confidence level.

(c) CH4 emissions from the leaked wastewater ($PE_{CH4,bww,y}$):

Projects such as composting will usually have no wastewater discharge but there is a possibility that a small quantity of leaked wastewater is collected from windrows or as a balance of waste water and this leak wastewater may cause CH_4 emissions.

CH₄ emissions from leak and/or balance of waste water shall be calculated as follows.

$$PE_{\mathit{CH4},\mathit{BWW},y} = COD_{\mathit{outlet},\mathit{total},y} \cdot B_o \cdot MCF_{\mathit{outlet}} \cdot GWP_{\mathit{CH4}}$$

CDM – Executive Board page 26

where:

 $PE_{CH4,BWW,y}$ is the project methane emissions from wastewater during the year y (tCO2e)

 $COD_{outlet,total,y}$ is the outlet total COD of the wastewater during the year y (tCOD)

B_o is the outlet maximum methane producing capacity of wastewater (tCH4/tCOD)

MCF_{outlet} is the methane conversion factor of the storage system (fraction)

GWP_{CH4} is the Global Warming Potential of methane

MCF_{outet} is to be estimated in the same manner as that of MCF_{baseline,m} in the baseline.

(d) CO2 emissions from transportation ($PE_{CO2,Trans,y}$):

The project emissions from transportation are to be calculated using the total distance and IPCC default values for transportation fuel, as follows:

$$PE_{CO2,Trans,y} = \sum_{i} N_{vehicles,i,y} \cdot Dist_{i,y} \cdot FC_{i} \cdot NCV_{i} \cdot EF_{CO2,i}$$

where:

 $N_{\text{vehicles,i,y}}$ is the number of vehicle trips used for transportation, with similar loading capacity Dist_{i,v} is the average distance per trip travelled by transportation vehicles type i in the project

scenario during the year y (km)

 FC_i is the vehicle fuel consumption in volume or mass units per km for vehicle type i

 NCV_i is the net calorific value of fuel type i in TJ per volume or mass units

 $EF_{CO2.i}$ is the CO2 emission factor of the fossil fuel type i used in transportation vehicles,

(tCO2e/TJ)

(e) CO2 emissions from fossil fuels used for energy requirements ($PE_{CO2,FF,y}$):

CO₂ emissions from fossil fuel used in the project for energy requirements such as heating shall be calculated as follows:

$$PE_{CO2.FF,y} = FC_{i.project,y} \cdot NCV_i \cdot EF_{CO2.i} \cdot OXID_i$$

where:

 $FC_{i,project,y}$ is the fossil fuels consumed of type i for energy requirements during the year y in mass

or volume units

NCV_i is the Net Calorific Value (energy content) in TJ of fuel type i, per mass unit or volume

unit

EF_{CO2,i} is the CO2 emission factor per unit of energy of the fuel *i*. (tCO2e/TJ)

OXID_i is the oxidation factor of the fuel (see page 1.29 in the 1996 Revised IPCC Guidelines

for default values).

Where available, local values of NCV_i and $EF_{CO2,i}$ should be used. If no such values are available, country specific values (see e.g. IPCC Good Practice Guidance) are preferable to IPCC world-wide default values.

(f) CO2 emissions from electricity consumption (PECO2, Elec, y):

In case electricity is consumed for energy requirements in the baseline, CO2 emissions from electricity consumption shall be calculated as follows:

CDM – Executive Board page 27

$$PE_{CO2,Elec,y} = EC_{project,y} \cdot EF_{GridElec,y}$$

where:

EC_{project,y} is the project electricity consumption during the year y (MWh) EF_{GridElec,y} is the grid electricity emission factor for the year y (tCO2/MWh)

In cases where electricity is purchased from the grid, the emission factor $EF_{GridElec,y}$ should be calculated according to methodology ACM0002 ("Consolidated baseline methodology for grid-connected electricity generation from renewable sources"). If electricity consumption is less than small scale threshold of 15 GWh/yr, AMS. I.D.1 may be used.

Leakage

No leakage effects need to be accounted under this methodology.

Emission reductions

Emission reductions are calculated as follows:

$$ER_v = BE_v - PE_v - LE_v$$

Where:

 $ER_v = Emission reductions during the year y (tCO2/yr)$

 $BE_v = Baseline emissions during the year y (tCO2/yr)$

 $PE_v =$ Project emissions during the year y (tCO2/yr)

 $LE_v = Leakage emissions during the year y (tCO2/yr)$

Changes Required For Methodology Implementation in 2nd And 3rd Crediting Periods

Project participants shall check for updates of default values of IPCC used in this methodology. In case the default values are revised by IPCC, project participants shall use only revised values during methodology implementation in 2_{nd} and 3_{rd} crediting periods.

B.6.2. Data and parameters that are available at validation:

(Copy this table for each data and parameter)

Data / Parameter:	B_0
Data unit:	Kg CH4 per Kg COD
Description:	the maximum methane producing capacity of the inlet effluent to the anaerobic waste water treatment facility
Source of data used:	IPCC default value
Value applied:	0.21
Justification of the	The conservative value
choice of data or	
description of	
measurement methods	
and procedures	
actually applied:	
Any comment:	

CDM – Executive Board

Data / Parameter:	GWP _{CH4}
Data unit:	tCO2e
Description:	is the Global Warming Potential of methane
Source of data used:	IPCC Default value
Value applied:	21
Justification of the	Normal practice
choice of data or	
description of	
measurement methods	
and procedures	
actually applied:	
Any comment:	

Data / Parameter:	f_{d}
Data unit:	Fraction
Description:	is the fraction of anaerobic degradation due to depth
Source of data used:	Default value given in AM0039
Value applied:	0.7
Justification of the	The depth of anaerobic POME treatment ponds in the Malsa factory and a
choice of data or	conventional depth of the ponds throughout the Malaysian Palm Oil Industry is
description of	greater than 5 meters. Hence the default value for f_d is 0.7 for this depth.
measurement methods	
and procedures	
actually applied:	
Any comment:	

Data / Parameter:	Φ
Data unit:	
Description:	
Source of data used:	
Value applied:	0.9
Justification of the	Normal practice
choice of data or	
description of	
measurement methods	
and procedures	
actually applied:	
Any comment:	

Data / Parameter:	GWP _{N2O}
Data unit:	(tCO_2/tN_2O)
Description:	is the Global Warming Potential of nitrous oxide,
Source of data used:	IPCC
Value applied:	310
Justification of the	Normal practice
choice of data or	
description of	
measurement methods	
and procedures	
actually applied:	
Any comment:	

CDM – Executive Board

Data / Parameter:	NCV _i * EF _{CO2,i}
Data unit:	(MJ/litre) and (kgCO2/MJ) = (kgCO2/litre)
Description:	Emission factor for diesel fuel
Source of data used:	United States Environmental Protection Agency ("EPA")
Value applied:	2.672
Justification of the	Normal practice
choice of data or	
description of	
measurement methods	
and procedures	
actually applied:	
Any comment:	

Data / Parameter:	$\mathbf{D}_{\mathrm{fuel}}$
Data unit:	kg/l
Description:	Density of diesel fuel
Source of data used:	http://www.simetric.co.uk/si_liquids.htm
Value applied:	0.82 kg/l at 20° C
Justification of the	
choice of data or	
description of	
measurement methods	
and procedures	
actually applied:	
Any comment:	

Data / Parameter:	$\mathbf{EF_{c,N2O}}$
Data unit:	(tN ₂ O/t compost)
Description:	Emission factor for N ₂ O emissions from the composting process
Source of data used:	AM0025
Value applied:	0.043
Justification of the	Default value recommended in AM0025
choice of data or	
description of	
measurement methods	
and procedures	
actually applied:	
Any comment:	

Data / Parameter:	MCF
Data unit:	Factor
Description:	Methane Correction Factor
Source of data used:	IPCC
Value applied:	1.0
Justification of the	The Malsa landfill is managed with levelling of waste and some compaction
choice of data or	and is >5 meters in depth
description of	
measurement methods	
and procedures	

CDM – Executive Board

actually applied:	
Any comment:	

Data / Parameter:	F
Data unit:	Fraction
Description:	is the fraction of methane in the landfill gas, IPCC default value 0.5
Source of data used:	IPCC default
Value applied:	0.5
Justification of the	This is the conservative value
choice of data or	
description of	
measurement methods	
and procedures	
actually applied:	
Any comment:	

Data / Parameter:	DOC _i
Data unit:	Percent
Description:	is the percentage of degradable organic carbon (by weight) in EFB
Source of data used:	Malaysian Palm Oil publications
Value applied:	15% (wet weight)
Justification of the	Moisture content of EFB = 64%
choice of data or	Soilds content EFB = 36.2% (wet weight)
description of	Carbon content EFB = 55.2% (dry weight)
measurement methods	Carbon content of EFB= 0.552 * 36.2% = 20.0% (wet weight)
and procedures	Assume DOCj = 15% (wet weight) as a conservative value allowing for lignin
actually applied:	in the EFB.
	These data have been verified from laboratory tests and test reports are
	available to the validator.
Any comment:	After loading into the sterilizer cages, the FFB is subjected to steam-heat
	treatment in horizontal sterilizers. Saturated steam at a pressure of 3 kg/cm2
	and a temperature of 140°C is used as the heating medium. The FFB is usually
	steamed for 75 to 90 minutes after which fruits are stripped for oil extraction
	and EFB is discarded as waste. (Ref: "Industrial Process & The Environment -
	Handbook No. 3- Crude Palm Oil Industry" published by Malaysian
	Department of Environment). Hence the EFB is effectively "cooked" and
	"mashed" before discharge and would be considered as the same category as
	food waste with a DOC _i of 15%.

Data / Parameter:	DOC_f
Data unit:	fraction
Description:	is the fraction of DOC that can decompose
Source of data used:	IPCC default value
Value applied:	0.77
Justification of the	The value of DOCf is based on excluding lignin carbon in the method used
choice of data or	above to estimate this parameter
description of	
measurement methods	
and procedures	

CDM - Executive Board

page 31

actually applied:	
Any comment:	Appropriate value for readily degradable food type waste

Data / Parameter:	AF
Data unit:	factor
Description:	Regulatory requirements relating to landfill gas collection and flaring for EFB
	landfills. AF is defined as the ratio of the destruction efficiency of the
	collection and destruction system mandated by regulatory or contractual
	requirement to that of the collection and destruction system in the project
	activity.
Source of data used:	Local or national authorities
Value applied:	0
Justification of the	There is no regulatory requirement for capture and flaring of LFG at EFB
choice of data or	landfills in Malaysia
description of	
measurement methods	
and procedures	
actually applied:	
Any comment:	The 'Adjustment Factor' shall be revised at the start of each new crediting
	period taking into account the amount of GHG flaring that occurs as part of
	common industry practice and/or regulation at that point in the future.

B.6.3 Ex-ante calculation of emission reductions:

>>

As described in section B.6.1, the emission reductions are calculated according to methodology AM0039 "Methane emissions reduction from organic waste water and bioorganic solid waste using co-composting". The ex-ante calculation of emission reductions are completed with the following steps:

Baseline emissions

The following types of baseline emissions will be accounted under this methodology.

- (a) Methane (CH4) emissions from waste water in anaerobic lagoons or open storage tanks;
- (b) Methane (CH4) emissions from decay of bioorganic solid waste in disposal sites;
- (c) CO2 emissions from transportation of organic wastewater and bioorganic solid waste;
- (d) CO2 emissions from fossil fuels used for energy requirements and
- (e) CO2 emissions from grid electricity consumption.

Total baseline emissions are expressed as:

$$BE_{v} = BE_{CH4,WW,v} + BE_{CH4,SW,v} + BE_{CO2,Trans,v} + BE_{CO2,FF,v} + BE_{CO2,Elec,v}$$

For this project activity all of the electricity energy use in the baseline and in the project activity is from renewable resources (from fibre and husks produced in the processing of Fresh Fruit Bunches) and can be neglected. There is no use of fossil fuels on this plant site for heating purposes. Hence items (d) and (e) are zero, as well as for the pumping of organic waste water (part of (c)). The above equation becomes:

$$BE_{v} = BE_{CH4,WW,v} + BE_{CH4,SW,v} + BE_{CO2,TransEFB,v}$$

Baseline Assumptions:

 Raw POME concentration is 50,000 mg/L (before the POME sludge decanter) and after anaerobic/aerobic treatment the concentration of COD in the effluent is less than 100 mg/l.

CDM – Executive Board page 32

- 2. The average amount of FFB processed by the Malsa palm oil mill is estimated to be 300,000 t/year
- 3. The average amount of POME generated is 0.70 m3/t Fresh Fruit Bunches (as published by the Malaysian Department of Environment. Industrial Processes & the environment. Handbook number 3. Crude Palm Oil Industry). With the present production level of 300,000 t FFB/year (W_{FFB,y}), the annual volume of POME (V_{POME,y}) is 210,000 m³ /year. Ex-ante calculations assume constant monthly amount throughout the year.
- 4. The average amount of EFB generated is 0.23 /t of FFB, the annual amount of EFB is 69,000 t/year
- 5. Average monthly temperatures are taken from the nearest meteorological station at Sandakan (see Annex 3)
- (a) Methane (CH4) emissions from wastewater in open storage systems ($BE_{CH4,WW,v}$)

The baseline methane emissions from anaerobic lagoons or storage tanks are estimated based on the chemical oxygen demand (COD) of the effluent that would enter the lagoon in the absence of the project activity, the maximum methane producing capacity (B_o) and a methane conversion factor (MCF) that expresses what proportion of the effluent would be anaerobically digested in the open lagoons.

The baseline methane emissions are calculated using the following equation:

$$BE_{CH \, 4 \, WW \, m} = COD_{available \, m} \cdot B_o \cdot MCF_{baxeline} \cdot GWP_{CH \, 4}$$

 $MCF_{baseline,m}$ is estimated as the product of the fraction of anaerobic degradation due to depth (f_d) and the fraction of anaerobic degradation due to temperature $(f_{t,monthly})$:

$$MCF_{baseline,m} = f_d \cdot f_{t,monthly} \cdot 0.89$$

where:

 $f_{t,monthly}$ is calculated as follows:

$$f_{t,monthly} = \exp\left[\frac{E \cdot (T_2 - T_1)}{R \cdot T_1 \cdot T_2}\right]$$

Month	Average Temperature (°K) ¹	$\mathbf{F_{t,monthly}}$
January	299.5	0.745
February	300	0.777
March	300.5	0.811
April	301.5	0.882
May	301.5	0.882
June	301	0.846
July	301	0.846
August	301	0.846
September	301	0.846
October	300.5	0.811

¹ See Annex 3 for monthly average temperature records for Sandakan – the nearest meteorological station

CDM - Executive Board

page 33

November	300.5	0.811
December	300	0.777
Average		0.823

Parameter values used to calculate ex-ante baseline emissions for $BE_{CH4,WW,y}$

Parameter	Value
COD influent (mg/l)	50,000
COD _{effluent} (mg/l)	100
Yearly volume of POME (m ³)	210,000
$V_{\mathrm{POME,y}}$	
B _o	0.21
f_d	0.7
f _t (yearly average)	0.823
GWP_{CH4}	21

$$BE_{CH4, WW,y} = 210,000*((50,000-100) / 1,000,000) * 0.21*(0.7*0.823*0.89)*21\\ BE_{CH4, WW,y} = \textbf{23,742} \ \textbf{tCO2e/yr}$$

Ex-ante estimates of baseline emissions for BE_{CH4,WW,v}

Year	Baseline emissions BE _{CH4,WW,y} (tCO ₂ e/yr)
2008	23,742
2009	23,742
2010	23,742
2011	23,742
2012	23,742
2013	23,742
2014	23,742
2015	23,742
2016	23,742
2017	23,742

(b) Methane (CH4) emissions from decay of bioorganic solid waste in disposal sites (BE_{CH4.SW},)

The amount of methane that is generated from the biomass solid waste $BE_{CH4, SW, y}$ is calculated for each year with a multi-phase model. The model is based on a first order decay equation. In the calculation of type of waste streams, we are only using EFB as the only waste stream, although, we also include sludge and boiler ashes as well. The model calculates the methane generation based on the actual waste streams $A_{j,x}$ diverted from the landfill in the most recent year and all previous years since the project start (x=1 to x=y).

The amount of methane produced in a year is calculated as follows:

$$BE_{\mathit{CH4,SW},y} = \left[\varphi \cdot \frac{16}{12} \cdot F \cdot DOC_f \cdot MCF \cdot GWP_{\mathit{CH4}} \cdot \sum_{x=1}^{y} \sum_{j=A}^{D} A_{j,x} \cdot DOC_j \cdot \left(1 - e^{-k_j}\right) \cdot e^{-k_j(y-x)} \right] - MD_{\mathit{reg}} \cdot \left(1 - e^{-k_j}\right) \cdot e^{-k_j(y-x)} \cdot e^{-k_j(y-x)} \cdot \left(1 - e^{-k_j}\right) \cdot e^{-k_j(y-x)} \cdot$$

Where

CDM - Executive Board

page 34

$$MD_{reg,y} = MB_y * AF$$

There is no regulatory requirement in Malaysia to capture and flare landfill gas and no provision has been made to capture and flare LFG at the Malsa EFB landfill site. Hence AF = 0 and $MD_{\rm reg,y} = 0$.

Parameter values used to calculate ex-ante baseline emissions for $BE_{CH4,SW,y}$

Parameter	Value
Φ	0.9
$A_{j,x}$	69,000
MCF	1.0
DOC_f	0.77
AF	0
GWP_{CH4}	21
F	0.5
DOC_{j}	0.15
k _i	0.4

Table B.6.3-8. Ex-ante estimates of baseline emissions for BE_{CH4,SW,v}

Year	Baseline emissions BE _{CH4,SW,y} (tCO ₂ e/yr)
2008	33,105
2009	55,296
2010	70,171
2011	80,142
2012	86,826
2013	91,306
2014	94,309
2015	96,323
2016	97,672
2017	98,577

(c) CO2 emissions from transportation of organic wastewater and bioorganic solid waste $(BE_{CO2,Trans,y})$

The baseline emissions from transportation are to be calculated using distance travelled by trucks and the fuel emission factor, as follows:

$$BE_{\textit{CO2,Trans},y} = \sum_{i} N_{\textit{vehicles},i,y} \cdot Dist_{i,y} \cdot FC_{i,\textit{Trans}} \cdot NCV_{i} \cdot EF_{\textit{CO2},i}$$

The quantity of EFB transported to the plantation landfill = 69,000 tpy Number or round trips for 5 tonne truck = 69,000 / 5 = 13,800 trips/yr Round trip distance = 6 km

Parameter values used to calculate ex-ante baseline emissions for BE_{CO2,TransEFB,v}

Parameter	Value
$N_{\text{vehicles,i,y}}$	13,800

CDM – Executive Board

page 35

Dist _{i,y}	6km
$FC_{i,TransEFB}$	0.2
$NCV_i * EF_{CO2,i} * D_{fuel}$	2.672
(kgCO2e/litre)	

 $BE_{CO2,TransEFB,y} = 13,800 * 6 * 0.2 * 2.672 / 1,000$

 $BE_{CO2,TransEFB,y} = 44 tCO2e/yr$

Since this is such a small amount and for conservative purposes, $BE_{CO2,TransEFB,y}$ is taken as zero.

Ex-ante estimates of baseline emissions for BE_{CO2,TransEFB,y}

Year	Baseline emissions BE _{CO2,TransEFB,y} (tCO ₂ e/yr)
2008	0
2009	0
2010	0
2011	0
2012	0
2013	0
2014	0
2015	0
2016	0
2017	0

- (d) CO2 emissions from fossil fuels used for energy requirements. Not considered for conservativeness. Business practice does not change before or after the project.
- (e) CO2 emissions from grid electricity consumption. Not applicable. The mill produces its own electricity from renewable resources (biomass)

Ex-ante estimates of total baseline emissions for the project activity

	Baseline Emissions			
Year	BE _{CO2,TransEFB,y} (tCO ₂ e/yr)	BE _{CH4,SW,y} (tCO ₂ e/yr)	BE _{CH4,WW,y} (tCO ₂ e/yr)	Total Baseline Emissions (tCO2e/yr)
2008	0	33,105	23,742	56,847
2009	0	55,296	23,742	79,038
2010	0	70,171	23,742	93,913
2011	0	80,142	23,742	103,884
2012	0	86,826	23,742	110,568
2013	0	91,306	23,742	115,048
2014	0	94,309	23,742	118,051
2015	0	96,323	23,742	120,064
2016	0	97,672	23,742	121,414
2017	0	98,577	23,742	122,318
Total 2008 –	0	803,727	237,420	1,041,146

CDM – Executive Board pa

2017		

Project emissions

The following types of project emissions will be accounted under this methodology:

- (a) N₂O emissions from composting process
- (b) CH₄ emissions from composting process
- (c) CH₄ emissions from leaked waste water
- (d) CO₂ emissions from transportation
- (e) CO₂ emissions from fossil fuels consumption
- (f) CO₂ emissions from grid electricity consumption

Diesel fuel used in front end loaders in the composting process and diesel fuel used for transport of EFB to the composting plant and for the transport of compost to spread as fertilizer on the plantation are accounted for under item (d). However, since the amount of diesel fuel used to transport the EFB to the landfill site in the baseline scenario is assumed to be negligible, then the amount used to transport EFB the much shorter distance to the compost plant is also assumed to be negligible. No other fossil fuels are used in the process and, therefore, item (e) is zero. All electricity generation for use in the mill and the composting process is from renewable fuels (waste products from the palm oil process) and hence item (f) is also zero.

Total project emissions are expressed as

$$PE_{y} = PE_{N2O,Comp,y} + PE_{CH4,Comp,y} + PE_{CH4,Bww,y} + PE_{CO2,Trans,y} + PE_{CO2,FF,y} + PE_{CO2,Elec,y}$$

 $PE_{CO2,FF,y}$ and $PE_{CO2,Elec,y} = \mathbf{0}$

(a) N_2O emissions from composting ($PE_{N2O,Comp,v}$):

N₂O emissions from composting during the year y are calculated as follows:

During the storage of waste in collection containers as part of the composting process itself and during the application of compost, N_2O emissions might be released. A default N_2O emission factor of 0.043 kg N_2O per tonne of compost and calculate emissions as follows:

$$PE_{N2O,Comp,y} = Q_{Compost,y} \cdot EF_{N2O,Comp} \cdot GWP_{N2O}$$

The quantity of compost produce each year = 17,250 tonnes

Parameter values used to calculate ex-ante project emissions for PE_{N2O,Comp,v}

Parameter	Value
Q _{compost,y}	17,250
EF _{N2O,Comp}	0.043
GWP _{N2O}	310

$$PE_{N2O,Comp,v} = 17,250 * 0.043 * 310 / 1,000$$

$$PE_{CH4, WW,y} = 230 \text{ tCO2e/yr}$$

page 37

CDM – Executive Board

Ex-ante estimates of project emissions for $PE_{N2O,Comp,y}$

Year	Project emissions PE _{N2O,Comp,y} (tCO ₂ e/yr)
2008	230
2009	230
2010	230
2011	230
2012	230
2013	230
2014	230
2015	230
2016	230
2017	230

(b) CH_4 emissions from composting ($PE_{CH4,Comp,y}$):

During the composting process, aerobic conditions may not be completely reached in all areas at all times. Pockets of anaerobic conditions – isolated areas in the composting heap where oxygen concentrations are so low that the biodegradation process turns anaerobic – may occur. The emission behaviour of such pockets is comparable to the anaerobic situation in a landfill. This is a potential emission source for methane similar to anaerobic conditions which occur in unmanaged landfills. Through predetermined sampling procedures the percentage of waste that degrades under anaerobic conditions can be determined. Using this percentage, project methane emissions from composting process are calculated, as follows:

$$PE_{CH4,Comp,y} = PE_{CH4,Anaerobic,y} \cdot GWP_{CH4} \cdot S_{a,y}$$

Where:

PE_{CH4,Anaerobic,y} is the quantity of methane that would be generated from anaerobic pockets in the composting process, during the year y (tCH₄)

GWPcH4 is the global warming potential of CH4, default value 21

 $S_{a,y}$ Is the share of waste that degrades under anaerobic conditions in the composting plant during the year y (%). $S_{a,y} = S_{OD} / S_{total} = \text{Number of Samples with oxygen level} < 10\% / \text{Number of samples taken for oxygen measurement.}$ S_{OD} & S_{total} will be determined as described in section B.7, Monitoring plan

The proposed tunnel composting process maintains a high concentration of oxygen by a very consistent and even distribution of airflow throughout the mass of composting waste. Hence it is expected that $S_{a,y} = 0$.

Therefore:

$$PE_{CH4,Comp,y} = 0$$

(c) CH4 emissions from the leaked wastewater ($PE_{CH4,bww,y}$):

CDM – Executive Board page 38

Projects such as composting will usually have no wastewater discharge but there is a possibility that a small quantity of leaked wastewater is collected from windrows or as a balance of waste water and this leak wastewater may cause CH_4 emissions.

CH₄ emissions from leak and/or balance of waste water shall be calculated as follows.

$$PE_{\mathit{CH4,BWW},y} = COD_{\mathit{outlet,total},y} \cdot B_o \cdot MCF_{\mathit{outlet}} \cdot GWP_{\mathit{CH4}}$$

However, in this project the proposed tunnel composting process collects all leachate and recycles it back to the process.

Therefore:

 $PE_{CH4,BWW,y} = 0$

(d) CO2 emissions from transportation ($PE_{CO2,Trans,v}$):

The project emissions from transportation are to be calculated using the total distance and IPCC default values for transportation fuel, as follows:

$$PE_{\textit{CO2,Trans},y} = \sum_{i} N_{\textit{vehicles},i,y} \cdot Dist_{i,y} \cdot FC_{i} \cdot NCV_{i} \cdot EF_{\textit{CO2},i}$$

Transport fuel is used in the composting process as fuel for front end loaders and for the transport of compost to spread on the plantation as fertilizer.

Fuel for front end loaders

Number of front end loaders = 2

Yearly operating hours of front end loaders = 4 hours/day x 300 days = 1,200 hours

Diesel Fuel use per operating hr = 30x2 = 60 litres

Total yearly fuel use by front end loaders $(F_{compost,y}) = 72,000$ litres

NCV_i * EF_{CO2i} (kgCO2e/litre) = 2.672 (United States Environmental Protection Agency ("EPA")

Then: $PE_{CO2,Trans,yI} = 72,000 * 2.672 / 1,000 = 192$

Fuel required to transport compost to the plantation Yearly amount of compost produced = 17,250 tonnes Number of 5 tonne truck loads = $17,250 / 5 \sim 3,500$ trips / yr Average distance = 20 km

FC_{i,TransEFB}= 0.2 litre/km

 $PE_{CO2,Trans,v II} = 3,500 * 20 * 0.2 * 2.672 / 1,000 = 37$

Given: (i) the small size of this figure; (ii) that the project is not claiming credits from the avoidance of transportation of EFBs to the landfills or for the avoidance of chemical fertilizer transport; (iii) the difficulty to monitor these parameters; and (iv) the fact that the project plans to use the empty trucks returning to the plantations after unloading FFBs into the palm oil mills to deliver the project's fertilizer, these emissions are taken as zero.

Hence $PE_{CO2,Trans,y II} = 0$

CDM - Executive Board

page 39

Parameter values used to calculate ex-ante project emissions for $PE_{CO2,Trans,y}$

 $PE_{CO2,Trans,y} = 192 + 0 = 192 \text{ tCO2e/yr}$

Ex-ante estimates of project emissions for PE_{CO2,Trans,y}

Year	Project emissions PE _{CO2,Trans,y} (tCO ₂ e/yr)
2008	192
2009	192
2010	192
2011	192
2012	192
2013	192
2014	192
2015	192
2016	192
2017	192

(e) CO2 emissions from fossil fuels used for energy requirements. Not applicable, business practice does not change before or after the project.

(f) CO2 emissions from grid electricity consumption. Not applicable. The mill produces its own electricity from renewable resources (biomass)

Ex-ante estimates of total project emissions for the project activity

	Total Project Emissions				
Year	PE _{CO2,Trans,y} (tCO ₂ e/yr)	PE _{CH4,BWW,y} (tCO2e/yr)	PE _{CH4,Comp,y} (tCO2e/yr)	PE _{N2O,Comp,y} (tCO ₂ e/yr)	Total Project Emissions (tCO2e/yr)
2008	192	0	0	230	422
2009	192	0	0	230	422
2010	192	0	0	230	422
2011	192	0	0	230	422
2012	192	0	0	230	422
2013	192	0	0	230	422
2014	192	0	0	230	422
2015	192	0	0	230	422
2016	192	0	0	230	422
2017	192	0	0	230	422
Total 2008 – 2017	1,920	0	0	2,300	4,220

Leakage

No leakage effects need to be accounted under this methodology.

B.6.4 Summary of the ex-ante estimation of emission reductions:

page 40

CDM – Executive Board

>>

Emission reductions

Emission reductions are calculated as follows:

$$ER_y = BE_y - PE_y - LE_y$$

Ex-Ante Estimate of Emission Reductions for the project activity

Year	Estimation of baseline emissions (tCO2e)	Estimation of project activity emissions (tCO2e)	Estimation of leakage (tCO2e)	Estimation of emission reductions (tCO2e)
2008	56,847	422	0	56,425
2009	79,038	422	0	78,616
2010	93,913	422	0	93,491
2011	103,884	422	0	103,462
2012	110,568	422	0	110,146
2013	115,048	422	0	114,626
2014	118,051	422	0	117,629
2014	120,064	422	0	119,642
2014	121,414	422	0	120,992
2014	122,318	422	0	121,896
Total 2008 – 2017	1,041,146	4,220	0	1,036,926

B.7 Application of the monitoring methodology and description of the monitoring plan:

B.7.1 Data and parameters monitored:

(Copy this table for each data and parameter)

Data / Parameter:	$ m V_{POME,y}$
Data unit:	Cubic meter per yr
Description:	Yearly volume of wastewater pumped into the waste treatment plant's buffer
	tank.
Source of data to be	Continuously measured by Flow Meter at the water treatment plant buffer tank.
used:	
Value of data applied	210,000 m ³ /year assuming 1 tonne of FFB generates 0.7 m ³ of POME as
for the purpose of	published by the Malaysian Department of Environment. Industrial Processes &
calculating expected	The Environment. Handbook number 3. Crude Palm Oil Industry.
emission reductions in	
section B.5	
Description of	Flow Meter specified to the flowrate of POME and data recorded by PLC
measurement methods	process computer.
and procedures to be	
applied:	
QA/QC procedures to	The Flow Meter will undergo maintenance/calibration subject to appropriate
be applied:	industry standards annually. Weekly update of flow rate of POME based on daily

CDM – Executive Board

	flow meter records.
Any comment:	$V_{POME,v}$ includes all waste water streams including wasterwater from the
	Steriliser, the Oil Clarification and the Hydrocyclone process.

Data / Parameter:	COD _{influent}
Data unit:	mg COD/litre
Description:	Annual weighted average COD concentration of the palm oil mill POME from
	all sources (before decanters)
Source of data to be	Sampling and analysis by standard methods
used:	
Value of data applied	50,000 mg/l is the industry average as published by the Malaysian Department of
for the purpose of	Environment. Industrial Processes & The Environment. Handbook number 3.
calculating expected	Crude Palm Oil Industry.
emission reductions in	
section B.5	
Description of	At least quarterly manual sampling and analysis of the homogenized POME
measurement methods	(including all sources) before the decanter.
and procedures to be	
applied:	
QA/QC procedures to	Sampling according to internationally recognized procedures and analyses to be
be applied:	carried out by an accredited laboratory using standard QA/QC procedures
Any comment:	The decanter is included in the project boundary as all of the POME, including
	the decanter sludge, is treated in the composting process and subsequently any
	excess POME is treated in the aerobic treatment ponds, which are also within the
	project boundary.

Data / Parameter:	COD _{effluent}
Data unit:	mg COD/litre
Description:	COD of POME effluent after pre-treatment in the composting facility and final polishing treatment in the aerobic lagoons before discharge.
Source of data to be used:	Sampling and analysis by standard methods.
Value of data applied for the purpose of calculating expected emission reductions in section B.5	100 mg/l
Description of measurement methods and procedures to be applied:	At least quarterly manual sampling and analysis of the POME effluent discharge from the aerobic treatment ponds.
QA/QC procedures to be applied:	Sampling according to internationally recognized procedures and analyses to be carried out by an accredited laboratory using standard QA/QC procedures
Any comment:	A large percentage of the COD will be eliminated from the POME in the suspended solids removal treatment as a pre-treatment in the co-composting facility, while some 60% of the POME will be dissipated in the composting process. The remaining pre-treated POME will receive a final polishing treatment in aerobic lagoons prior to discharge.

Data / Parameter:	$A_{i,x}$
Data unit:	metric tonne (t)

CDM – Executive Board

Description:	The amount of EFB processed by the waste treatment plant
Source of data to be	Weight of FFB entering the mill on a daily basis with application of a standard
used:	23% factor relating the amount of EFB produced to the quantity of FFB.
Value of data applied for the purpose of calculating expected emission reductions in section B.5	69,000 t/year per plant (1 tonne of FFB produces 0.23 t of EFB)
Description of measurement methods and procedures to be applied:	The weight of FFB will be based on the measurement recorded by mill at their weighbridge as part of the mills inventory management.
QA/QC procedures to be applied:	Annually calibration and maintenance of weighing bridge subject to appropriate industry standards. Weekly update of FFB processed based on daily weighing bridge records.
Any comment:	The Malaysian Department of Environment has published a process mass balance for Oil Palm mills in Malaysia which also applies to the Malsa mill. The reference is included in Annex 3 and shows that 0.23 tonne of EFB is produced for every tonne of FFB. All of the EFB will be processed in the composting plant on a daily basis for 365 days per year. The plant is designed to allow regular and periodic maintenance without having to shut down the process for any extended period.

Data / Parameter:	F _{cons}
Data unit:	Litres
Description:	Fuel consumption for equipment used in the composting process
Source of data to be	Purchase invoices for dedicated fuel depot at compost plant
used:	
Value of data applied	72,000 litres/yr
for the purpose of	
calculating expected	
emission reductions in	
section B.5	
Description of	Fuel consumed to be defined by billing figures from fuel suppliers
measurement methods	
and procedures to be	
applied:	
QA/QC procedures to	n/a
be applied:	
Any comment:	

Data / Parameter:	Q _{compost,y}
Data unit:	
Description:	Total quantity of compost produced in the year.
Source of data to be	Continual, daily records of production inventory, typically measured by standard
used:	40kg bags or 1-tonne PP bulk bags.
Value of data applied	17,250 tonnes/yr (Assumes 75% volume reduction during composting process)
for the purpose of	
calculating expected	

CDM – Executive Board

emission reductions in section B.5	
Description of measurement methods and procedures to be applied:	The measurement will be based on the measurements taken at the packaging/distribution plant
QA/QC procedures to be applied: Any comment:	Scales at packaging/distribution plant to be regularly maintained and calibrated according to manufacturer's instructions.

Data / Parameter:	S _{OD}		
Data unit:	Number		
Description:	Number of samples with oxygen level < 10%		
Source of data to be	Oxygen sensor and transmitter		
used:			
Value of data applied	0		
for the purpose of			
calculating expected			
emission reductions in			
section B.5			
Description of	n/a		
measurement methods			
and procedures to be			
applied:			
QA/QC procedures to	Oxygen sensor and transmitter to be calibrated on a regular basis according to		
be applied:	the manufacturer's instructions. Measurement itself to be continuous and		
	automated by using PLC/SCADA process control system. A statistically		
	significant sampling procedure will be set up that consists of multiple		
	measurements throughout the different stages of the composting process		
	according to a predetermined pattern (depths and scatter) on a daily basis. The		
	data also will be used for control of the composting process.		
Any comment:			

Data / Parameter:	S _{total}		
Data unit:	Number		
Description:	Number of samples taken for oxygen measurement		
Source of data to be	Oxygen sensor and transmitter		
used:			
Value of data applied	n/a		
for the purpose of			
calculating expected			
emission reductions in			
section B.5			
Description of	Total number of samples taken per year, where S _{total} should be chosen in a		
measurement methods	manner that ensures estimation of S _a with 20% uncertainty at 95% confidence		
and procedures to be	level.		
applied:			
QA/QC procedures to	Oxygen sensor and transmitter to be calibrated on a regular basis according to		
be applied:	the manufacturer's instructions. Measurement itself to be continuous and		
	automated by PLC/SCADA process control system. A statistically significant		
	sampling procedure will be set up that consists of multiple measurements		

CDM – Executive Board

	throughout the different stages of the composting process according to a predetermined pattern (depths and scatter) on a daily basis. The data also will be used for control of the composting process.
Any comment:	

Data / Parameter:	$\mathbf{k}_{\mathbf{j}}$			
Data unit:	Factor			
Description:	The decay rate for the waste stream type j – in this case EFB			
Source of data to be	IPCC 2006 Guidelines for National Greenhouse Gas Inventories (adapted from			
used:	Volume 5, Table	Volume 5, Table 3.3)		
Value of data applied		Waste Type	k _j (%)	
for the purpose of			MAT>20°C	
calculating expected			MAP>1000 mm	
emission reductions in	Rapidly	Food, food waste, beverages and	0.40	
section B.5	degrading	tobacco (other than sludge)		
	MAP for Sandak	an is $> 26^{\circ}$ C (see Annex 3) an is 2078.5 mm (see Annex 3)		
Description of		A method has been developed for measuring k _j for EFB as described in Annex 4.		
measurement methods	This method will be used to provide an accurate measure of k_j prior to the end of			
and procedures to be applied:	the first verification period.			
QA/QC procedures to	Incorporated into the test procedure			
be applied:				
Any comment:	Due to the very high annual rainfall and temperature in this area of Malaysia and the highly biodegradable nature of EFB, the decay rate factor for EFB under anaerobic conditions in a landfill will be even higher than the value			
	recommended for food waste at MAT $> 20^{\circ}$ C and MAP > 1000 mm in the IPCC			
	2006 Guidelines. It is necessary, therefore, to carry out a test to accurately			
determine this value.				

CDM - Executive Board

page 45

B.7.2 Description of the monitoring plan:

>>

MONITORING PLAN

1. Introduction

A special purpose vehicle (SPV) has been set up to own and operate the composting plant. The purpose of the Monitoring Plan (MP) is to provide a standard by which the SPV will conduct monitoring and verification of the proposed CDM project activity. The MP will be in accordance with all relevant rules and regulations of the CDM. The MP forms an integral part of this PDD and will facilitate accurate and consistent monitoring of the Project's Certified Emission Reductions (CERs). The SPV will use the MP for the duration of the project activity and will refine and expand it from time to time, as required. A CDM Management Unit has been established within the SPV organizational structure to manage the preparation and implementation phases of the proposed CDM project activity. During implementation it will be responsible for organizing and supervising all of the monitoring activities required for accurate and timely verification and reporting of the CERs generated.

2. Specific Objectives of the Monitoring Plan

Specifically, the objectives of the MP are the following:

- Establishing and maintaining a reliable and accurate monitoring system
- Provide guidance for the implementation of necessary measurement and record management operations
- Guidance for meeting CDM requirements for verification and certification

3. Operational and Monitoring Obligations

The MP will be supported by a CDM Operations and Monitoring Manual which will be prepared before the start of the first crediting period and will be tested during start up of the components of the project activity. This will provide an opportunity to correct any deficiencies and further refine the monitoring and recording procedures. It will also provide an opportunity to train laboratory and operating personnel in the strict requirements for accuracy in collecting and recording data for CDM purposes.

4. Management and Operational Systems

In order to ensure a successful operation of the Project and the credibility and verifiability of the CERs achieved, the Project will have a well-defined management and operational system. A system will be put in place for the project activity and include the operation and management of the monitoring and record keeping system that is described in the MP.

The first line of responsibility for implementing the MP will be the Board and Managing Director of the SPV. The CDM coordinator reports directly to the Managing Director. The coordinator's primary responsibility is to ensure that all monitoring and data recording for the project activity meet the requirements for CER verification and certification. This will involve:

- The establishment of transparent systems for the collection, computation and storage of data, including adequate record keeping and data monitoring systems.
- Setting internal auditing procedures for data verification consistent with CDM requirements
- Setting up a regular reporting system meeting internal and external requirements
- Establishing quality control procedures for all monitorable parameters
- Evaluating training needs and carrying out training programs

CDM – Executive Board page 46

- Monitoring and reviewing safety and environmental aspects of the CDM operations
- Community and stakeholder consultation.

The monitoring requirements for the project activity are described in detail in Section B.7.1 and are not repeated here.

B.8 Date of completion of the application of the baseline study and monitoring methodology and the name of the responsible person(s)/entity(ies)

>>

Date of completion: 10/05/2007

Person/entity determining the baseline:

Climate Change Capital Ltd.,

49 Grosvenor Street, London, W1K 3HP, United Kingdom

Roger Batstone Michael Brown Javier Rojo

 rbatstone@c-c-capital.com
 mbrown@c-c-capital.com
 jrojo@c-c-capital.com

 Tel: +44 (0)20 7290 7040
 Tel: +44 (0)20 7290 6029
 Tel: +44 (0)20 7290 6023

 Fax: +44 (0)20 7290 7041
 Fax: +44 (0)20 7290 3593
 Fax: +44 (0)20 7290 3593

Climate Change Capital Ltd is the Project CDM investor and also a Project Participant

SECTION C. Duration of the project activity / crediting period

α	T	0.41	• .	4 • • 4
C.1	Duration	of the	nroject	activity.

C.1.1. Starting date of the project activity:

>>

01/06/2007 (Expected)

C.1.2. Expected operational lifetime of the project activity:

>>

21 years

C.2 Choice of the <u>crediting period</u> and related information:

C.2.1. Renewable crediting period

C.2.1.1. Starting date of the first crediting period:

>>

N/A

C.2.1.2. Length of the first crediting period:

>>

N/A

C.2.2. Fixed crediting period:

C.2.2.1. Starting date:

CDM – Executive Board

page 47

01/01/2008 (Expected)

C.2.2.2. Length:

>>

10 years

SECTION D. Environmental impacts

>>

D.1. Documentation on the analysis of the environmental impacts, including transboundary impacts:

>>

The project activity will not have any adverse environmental impacts. Furthermore the activity does not fall under those that require Environmental Impact Assessment (EIA) by the host country. The project activity will provide the following environment benefits:

- Reduction of methane and other odorous emissions from the EFB landfill and the anaerobic POME lagoons
- Control of odours in the tunnel composting process with treatment of any air emissions through a compost bio-filter
- No leachate emissions from the tunnel composting process as all leachate is collected a recycled to the process
- Recycling of waste back to the plantation as an enriched compost
- Reduced use of chemical fertilisers
- Improve soil conditions in the oil palm plantation
- Prevent BSR disease in the oil palm plantation
- Prevent leachate runoff into streams from EFB landfill

D.2. If environmental impacts are considered significant by the project participants or the <u>host Party</u>, please provide conclusions and all references to support documentation of an environmental impact assessment undertaken in accordance with the procedures as required by the <u>host Party</u>:

>>

Environmental impacts of the process are negligible, while the environmental benefits are substantial.

CDM - Executive Board

page 48

SECTION E. Stakeholders' comments

>>

E.1. Brief description how comments by local stakeholders have been invited and compiled:

>>

A public forum was organized in conjunction with the requirement for a consultation of local stakeholders in the design for the CDM Project on waste recycling through integrated waste management at Malsa Corporation, Sandakan, Sabah. The public forum was held at the Sabah Hotel, Sandakan on 9th May from 9.00 a.m. to 12.00 noon.

The potential stakeholders were identified, including government, industry and business, non-government organisations (NGOs), academia, civil society and the media. Invitations were sent directly to more than 50 potential stakeholders about 3 weeks before the date of the forum. In addition, an advertisement, announcing the public forum, was placed in a local newspaper, the Daily Express.

A total of 47 participants attended the public forum. A brief introduction was given by the Chairman, Mr. Shen Lim of Inno Integrasi, before presentations as follows:

- The Clean Development Mechanism Javier Rojo of Climate Change Capital,
- The background of the Palm Oil Industry, waste management, bio-products generated from integrated waste management, and the proposed project at Malsa Corporation - Shen Lim of Inno Integrasi
- The technology of the EcoRegen system for integrated waste management at the palm oil mill -Mr. Khai Yip Mun of EcoRegen

E.2. Summary of the comments received:

>>

Comments and questions received covered issues such as project sustainability, approval from the Department of Environment, resource depletion, discharges/emissions into the environment, economic benefits to the industry, impact to the local community and clarification of the relevance of CDM. These comments are questions are detailed in the following section E.3.

Following the Q&A the Chairman thanked the participants, and informed that the relevant issues and concerns raised would be taken into account for the finalizing of the PDD and the full PDD would be posted on the website by the Project Validator, SGS, for 30 days on completion of the validation report, for comments and feedback from all interested stakeholders.

E.3. Report on how due account was taken of any comments received:

CDM – Executive Board page 49

]Question/Comment	Response
1. Is the technology approved by the Department of Environment (DOE)?	EcoRegen has met and presented to the DOE Sabah and received an encouraging response. The application submission process for approval of the technology for Malsa Corporation is currently in progress.
2. How sustainable is the project in terms of	In Malsa there is excess power capacity from
energy consumption – will more fossil fuel be	renewable sources in the current operation that can be
required to operate the technology?	used by the waste treatment system, which is far in excess of the level of power required by the waste treatment plant.
3. How does CDM apply to this project?	The project activities qualify for CDM through avoiding the release of methane emissions. In the business as usual scenario methane is released through the anaerobic degradation of both the solid and liquid wastes.
4. This project does not result in zero-discharge.	This process does not result in zero-discharge, but does treat 100% of the waste from the palm oil mill and reduces leachate to zero. The fertilizer is produced from 60% of the POME volume, 100% of the EFB and solids removed from the remaining 40% of the POME. The residual water from the 40% POME has significantly reduced COD following the removal of suspended solids and is finally treated aerobically.
5. During high season of production, there is	The waste treatment plant does need a limited amount
excess power available for the waste treatment	of power to operate at night. During high season the
plant, but during low production season, will the project have to resort to fossil fuel for energy?	power requirement of the waste treatment plant can be met fully by normal operation of the palm oil mill. During low season the waste treatment plant will require power supply at times when the palm oil mill will not be operational. At these times the existing renewable energy supply will still be more than adequate to cover requirement. However, in the event that back-up power from diesel is required, then the diesel usage will be included in the project emissions calculation.
6. Does the project meet Malaysia's policy on sustainable development?	Yes, in the 3 areas of environmental, social and economic sustainability. These are attained through treating 100% of the wastes, creating new and skilled jobs and producing bio-organic fertilisers.
7. What is the impact on the local community, especially on the communities downstream of the project.	Job creation and more opportunities for developing and transfer of skills. Pest reduction due to removal of wastes will benefit the local communities.
8. Apart from using it internally can the owner sell the bio-organic fertiliser to the open market?	There is an economic value for the bio-organic fertiliser and selling it to the open market could be an option.
9. What is the economic benefit of such a project to business in term of investment costs and returns?	This would vary on a case-to-case basis and should be discussed on a one-to-one-basis.

CDM – Executive Board

page 50

Annex 1

CONTACT INFORMATION ON PARTICIPANTS IN THE PROJECT ACTIVITY

Organization:	Climate Change Capital	
Street/P.O.Box:	49 Grosvenor Street	
Building:		
City:	London	
State/Region:		
Postfix/ZIP:	W1K 3HP	
Country:	United Kingdom	
Telephone:	+44 (0)20 7290 7040	
FAX:		
E-Mail:		
URL:		
Represented by:		
Title:	Transaction Manager	
Salutation:	Mr.	
Last Name:	Rojo Alvarez	
Middle Name:		
First Name:	Javier	
Department:	Carbon Markets	
Mobile:	+44 (0)7776 227 591	
Direct FAX:	+44 (0)20 7290 3593	
Direct tel:	+44 (0)20 7290 6023	
Personal E-Mail:	jrojo@c-c-capital.com	

Organization:	Inno Integrasi Sdn Bhd		
Street/P.O.Box:	108, Jalan Tun H.S. Lee,		
Building:	3rd floor, Bangunan Fung Keong		
City:	Kuala Lumpur		
State/Region:			
Postfix/ZIP:	50000		
Country:	Malaysia		
Telephone:	+60320324522		
FAX:	+60320315188		
E-Mail:			
URL:			
Represented by:			
Title:	Director		
Salutation:	Mr.		
Last Name:	Lim		
Middle Name:			
First Name:	Shen		
Department:			
Mobile:	+6012-2100848		
Direct FAX:			
Direct tel:			
Personal E-Mail:	shen.lim@gmail.com		

CDM – Executive Board

page 51

Annex 2

INFORMATION REGARDING PUBLIC FUNDING

NO PUBLIC FUNDING IS INVOLVED IN THIS PROJECT

CDM - Executive Board

page 52

Annex 3

BASELINE INFORMATION

Monthly Temperature and Rainfall averages for Sandakan			
January	Avg Low: 24 °C	Avg Hi: 29°C	Avg Precip: 215.6 mm
February	Avg Low: 24 °C	Avg Hi: 30°C	Avg Precip: 187.9 mm
March	Avg Low: 24 °C	Avg Hi: 31°C	Avg Precip: 121.3 mm
April	Avg Low: 25°C	Avg Hi: 32°C	Avg Precip: 61.8 mm
May	Avg Low: 25°C	Avg Hi: 32°C	Avg Precip: 92.5 mm
June	Avg Low: 24 °C	Avg Hi: 32°C	Avg Precip: 135.6 mm
July	Avg Low: 24 °C	Avg Hi: 32°C	Avg Precip: 147.7 mm
August	Avg Low: 24 °C	Avg Hi: 32°C	Avg Precip: 149 mm
September	Avg Low: 24 °C	Avg Hi: 32°C	Avg Precip: 188.8 mm
October	Avg Low: 24 °C	Avg Hi: 31°CV	Avg Precip: 231.5 mm
November	Avg Low: 24 °C	Avg Hi: 31°C	Avg Precip: 231.5 mm
December	Avg Low: 24 °C	Avg Hi: 30°C	Avg Precip: 315.3 mm

Total Annual Average Rainfall for Sandakan = 2,078.5 mm

CDM - Executive Board

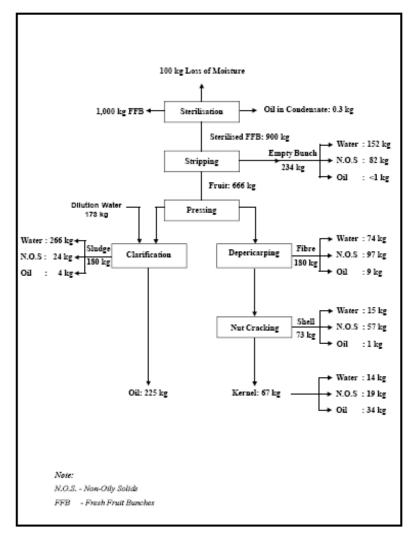


Figure 5 : Typical Mass Balance for Mill Processing of Palm Fruit

CDM - Executive Board

page 54

Annex 4

ANALYTICAL METHOD FOR ESTIMATING DECAY FACTOR "k"

Analytical method for estimating methane emissions from landfills and hence for estimating the decay factor "k"

Organic waste breaks down anaerobically in a landfill to produce methane and carbon dioxide. This process can be mathematically simulated by carrying out an ash and carbon balance as indicted in the diagram below, where for convenience the methane and carbon dioxide emission is represented by the amount of CO_2 equivalent.

Since the quantity of ash is unchanged in the process:

$$W_i * A_i = W_o * A_o$$

Since some of the carbon in the input biodegradable waste is converted to CO_2 and methane in the anaerobic process, a mass balance on carbon gives the following equation:

$$C_a * W_i = C_i * W_i - W_o * C_o^2$$

Combining these two equations:

$$C_a = C_i - (A_i/A_o) * C_o$$

This can be converted into CO₂ equivalent emission as a percent of input biodegradable waste by the following equation:

-

² Note that C and A are on a wet weight basis

CDM - Executive Board pag

$$CE_a = (44/12) * (C_i - (A_i/A_o) * C_o)$$

Where, CE_a is the amount of CO_2 equivalent emission from the anaerobic process as a percent of input wet biodegradable waste. Alternatively this equation can be expressed as follows:

$$CE = (44/12) * (C_i - (A_i/A_o) * C_o) * (1000/100) ----- (Equation 1)$$

Where, CE is the kg of CO₂ equivalent emission per tonne input waste.

If the waste had degraded under anaerobic conditions in a landfill the biodegradable carbon would have been converted into 50% by volume of methane and 50% by volume of CO₂, instead of 100% CO₂ as in aerobic composting process.

In the anaerobic process in the landfill:

2 moles of biodegradable $C \rightarrow p$ moles of $CH_4 + (2-p)$ moles of CO_2

Therefore:

24 kg of biodegradable C \rightarrow p * 16 kg of CH₄ + (2-p) * 44 kg of CO₂

24 kg of biodegradable $C \rightarrow (p * 16/d_{CH4}) \text{ m}^3 \text{ of } CH_4 + ((2-p) * 44/d_{CO2}) \text{ m}^3 \text{ of } CO_2$

Where d_{CO2} is the density of CO_2 at 15° C and 1.013 bar = 1.87 kg/m³ Where d_{CH4} is the density of CH_4 at 15° C and 1.013 bar = 0.688 kg/m³

Therefore, if there is a 50:50 mixture of CH₄ and CO₂ in the LFG, then:

$$(p * 16 / d_{CH4}) m^3 \text{ of } CH_4 = ((2-p) * 44 kg / d_{CO2}) m^3 \text{ of } CO_2$$

Hence: p = 1.0

Therefore in an anaerobic landfill process:

24 kg of biodegradable $C \rightarrow 16$ kg of $CH_4 + 44$ kg of CO_2

Expressing the equation in terms of CO₂ equivalent gives:

2 moles of biodegradable $C \rightarrow 2$ moles of CO_2

Therefore:

24 kg of biodegradable $C \rightarrow 88$ kg of CO_2 equivalent

It follows, therefore, that 88 kg of CO_2 equivalent represents 16 kg of CH_4 produced anaerobically in a <u>managed landfill</u> from the same amount of biodegradable C, since in the anaerobic process 44 kg of CO_2 is also produced.

Applying this factor to Equation 1 gives:

$$Lo_v = (440/12000) * (C_i - (A_i/A_o) * C_o) * (16/88)$$

page 56

CDM – Executive Board

$$= 0.00667 * (C_i - (A_i/A_o) * C_o)$$

Where:

Lo_v tonne of methane generated under anaerobic conditions in a landfill / tonne waste treated

Applying the IPCC correction factor of MCF for unmanaged landfills gives:

$$Lo_y = 0.00667 * MCF * (C_i - (A_i/A_o) * C_o)$$
 ----- (Equation 2)

Outline of a laboratory method to determine the methane decay rate factor "k" for any waste material under anaerobic conditions in a landfill

A test method along the lines of the Uganda MSW Decay Rate Study (a copy of which will be provided to the DOE for validation) will be carried out on Oil Palm EFB. The EFB will be shredded and compacted into the containers to a density of approximately 400kg/m³. The shredded EFB will be analysed for moisture, ash and total carbon according to ASTM methods listed below. The containers will be loaded with a bottom layer of coarse sand to 2 cm thickness and then the waste material and sealed as described in the attached reference with temperature and pressure sensors and placed in a container at a controlled temperature of 35°C (if possible, otherwise at room temperature with insulation wrapped around the containers to minimize heat loss). Eight bins will be loaded with shredded EFB. The bins will be opened and analysed for moisture, ash and total carbon according to the following schedule: week 2, 4, 6, 8, 10, 12, 24 and 48 weeks. The amount of methane generated during each time period is determined by Equation 2. Temperature and pressure in each container is recorded daily. The relevant ASTM Standards of analysis are as follows (equivalent standards can be used):

ASTM E 1757-01: Standard Practice for Preparation of Biomass for Compositional Analysis

ASTM D 2974-99: Standard Test methods for Moisture, Ash and Organic Matter of Peat and other Organic Soils

ASTM D 5373-02: Standard Test Methods for Instrumental Determination of Carbon, Hydrogen and Nitrogen in Laboratory Samples of Coal and Coke

CDM – Executive Board

page 57

Annex 5

Malaysian National CDM Criteria

National CDM Criteria	
This Table describes how the pro-	ject satisfies the Malaysian National CDM Criteria:
The project must support the sustainable development policies of Malaysia and bring direct benefits towards achieving sustainable development;	The proposed project addressed the sustainability of palm oil industry by improving the environmental impact of the supply chain. This project brings advantages to the palm oil industry in particular and to Malaysia as a whole as more consumers are demanding for sustainable food production. The proposed project is in support of the government efforts in developing and promoting the utilisation of environmental friendly and sustainable waste treatment. Increased utilisation of renewable energy resources is strategically important in the long term as it will contribute to the sustainability of energy supply.
Implementation of CDM projects must involve participation of Annex 1 party/Parties	The project is jointly developed by Inno Integrasi Sdn Bhd and Climate Change Capital. The Annex 1 party involved in the project is Climate Change Capital.
Project must provide technology transfer and/or improvement in technology;	The project has licensed the proprietary bio-technology to provide for technology and expertise on the manufacturing of the bio-organic fertilisers. The in-vessel co-composting technology is new to Malaysia and new to the palm oil industry. The project will be importing design and engineering technology and expertise from Australia, which reduces the environmental footprint of the composting process, whilst increasing the quality of the compost product.
Project must fulfil all conditions underlined by the CDM Executive Board;	The project activity would be developed according to the CDM Approved Methodology AM0039 and would follow and fulfil all conditions and procedure there in.
Project proponent should justify the ability to implement the proposed CDM project activity	Both Inno Integrasi Sdn Bhd and Climate Change Capital will jointly contribute to the cost of implementing the project activity bringing additional technical and technological support where required.
Giving due importance to environmental considerations	The project will reduce the emission of green house gases from the palm oil mill, particularly methane from EFB landfill and wastewater treatment ponds. The project will be implemented to comply with all applicable environmental regulations in the Malaysia